搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超图的超网络相继故障分析

马秀娟 赵海兴 胡枫

引用本文:
Citation:

基于超图的超网络相继故障分析

马秀娟, 赵海兴, 胡枫

Cascading failure analysis in hyper-network based on the hypergraph

Ma Xiu-Juan, Zhao Hai-Xing, Hu Feng
PDF
导出引用
  • 分析了快递超网络和电子元件超网络的相继故障扩散方式, 结合超图理论提出了2-section 图分析法和线图分析法, 并仿真分析了无标度超网络耦合映像格子的相继故障进程. 结果表明: 无标度超网络对外部攻击表现出了既鲁棒又脆弱的特性. 针对相继故障的不同扩散方式, 无标度超网络的相继故障行为表现出不同的特点. 超网络的相继故障行为和超网络的超度以及超边度分布有密切的联系, 也和超网络中超边的个数有关. 通过和同规模的Barabasi-Albert (BA)无标度网络对比, 在同一种攻击方式下同规模的无标度超网络都比BA 无标度网络表现出了更强的鲁棒性. 另外, 基于超边扩散的相继故障进程比基于节点扩散的相继故障进程更加缓慢.
    In this paper, we analyze the diffusion patterns of cascading failure, which happen in the express hypernetwork and electronic hypernetwork respectively. The cascading failure of the express hypernetwork is diffused by the node, and the cascading failure of the electronic hypernetwork is diffused by the hyper-edge. According to hyper-graph theory, we propose two methods to characterize these cascading failures, which are 2-section graph analytical method and line-graph analytical method. We analyze the characteristics of the cascading failures based on node by using the 2-section graph analytical method and based on hyper-edge by using line-graph analytical method, respectively. We construct a k uniform scale-free hypernetwork and analyze the cascading failure process of this hypernetwork based on the couple map lattice according to our methods. The simulation results show that the scale-free hypernetworks are both robust and vulnerable for attack. It is found that the cascading failure based on the node of k uniform scale-free hypernetwork is associated with the hyper-degree distribution of nodes, and the scale-free hypernetwork is robust for random attack and vulnerable for deliberate attack. The more nodes a hyper-edge has, the better robustness the hypernetwork has.The cascading failure based on the hyper-edge is different from the cascading failure based on the node. The cascading failure based on the hyper-edge is associated with the hyper-edge degree distribution. The hyper-edge degree distribution of the scale-free hypernetwork is not entirely the power-low distribution. When the cascading failure is diffused by the hyper-edge, the hypernetwork is vulnerable for random attack and robustness for deliberate attack if there are 3 or 5 nodes in a hyper-edge. Moreover, the hypernetwork becomes robust for the random attack if there are 7 nodes in a hyper-edge. Furthermore, the k uniform scale-free hypernetwork is more robust than the same size Barabasi-Albert scale-free network for the same attack. The cascading failure process based on the hyper-edge is slower than based on the node. We find that the edge number is another influential factor of robustness. The network is more robust if it has more edges for fixed node number. The line-graph has more edges than the 2-section graph in the same size scale-free hypernetwork, so the cascading failure of node is slower than that of hyper-edge.
      通信作者: 赵海兴, h.x.zhao@163.com
    • 基金项目: 国家自然科学基金(批准号: 61164005)、教育部春晖计划项目(批准号: Z2012101)、青海省科技厅项目(批准号: 2013-Z-Y17, 2015-ZJ-723)、藏文信息处理教育部重点实验室和藏文信息处理与机器翻译省级重点实验室资助的课题.
      Corresponding author: Zhao Hai-Xing, h.x.zhao@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61164005), the Chunhui Program of Ministry of Education of China (Grant No. Z2012101), the Project of Qinghai Office of Science and Technology, China (Grant Nos. 2013-Z-Y17, 2015-ZJ-723), the Key Laboratory of Tibetan Information Processing (Qinghai Normal University), Ministry of Education, China, and the Key Laboratory of Tibetan Information Processing and Machine Translation, Qinghai Province, China.
    [1]

    Wang J J, Rong L L, Deng Q H, Zhang J Y 2010 Eur. Phys. J. B 77 493

    [2]

    Zhang Z K, Liu C 2010 J. Stat. Mech. -Theory E 2010 10005

    [3]

    Krawiecki A 2013 Acta Phys. Polon. A 123

    [4]

    Gmez-Gardees J, Reinares I, Arenas A, Flora L M 2012 Sci. Reports 2 620

    [5]

    Hu F, Zhao H X, Ma X J 2013 Sci. Sin.: Phys. Mech. Astron. 43 16 (in Chinese) [胡枫, 赵海兴, 马秀娟 2013 中国科学: 物理学 力学 天文学 43 16]

    [6]

    Hu F, Zhao H X, He J B, Li F X, Li S L, Zhang Z K 2013 Acta Phys. Sin. 62 198901 (in Chinese) [胡枫, 赵海兴, 何佳培, 李发旭, 李淑玲, 张子柯 2013 62 198901]

    [7]

    Yang G Y, Liu J G 2014 Chin. Phys. B 23 018901

    [8]

    Liu J G, Yang G Y, Hu Z L 2014 PLoS One 9 e89746

    [9]

    Pei W D, Xia W, Wang Q L, et al. 2010 J. Univ. Sci. Technol. China 40 1186 (in Chinese) [裴伟东, 夏玮, 王全来 等 2010 中国科学技术大学学报 40 1186]

    [10]

    Sorrentino F 2012 New J. Phys. 14 033035

    [11]

    Wu Z Y, Duan J Q, Fu X C 2014 Appl. Math. Model 38 2961

    [12]

    Krawiecki A 2014 Chaos, Soliton. Fract. 65 44

    [13]

    Gmez S, Daz-Guilera A, Gmez-Gardees J, Prez-Vicente C J, Moreno Y, Arenas A 2013 Phys. Rev. Lett. 110 028701

    [14]

    Wang J P, G Q, Yang G Y, Liu J G 2015 Physica A 428 250

    [15]

    Yang G Y, Hu Z L, Liu J G 2015 Physica A 419 429

    [16]

    Sol-Ribalta A, Domenico de M, Gmez S, Arenas A 2013 arXiv preprint arXiv:1506.07165 [physics.soc-ph]

    [17]

    Buldyrev S V, Parshani R, Paul G, Stanley H E, Havlin S 2010 Nature 464 1025

    [18]

    Dong G G, Gao J X, Du R J, Tian L X, Stanley H E, Havlin S 2013 Phys. Rev. E 87 052804

    [19]

    Dong G G, Tian L X, Zhou D, Du R J, Xiao J, Stanley H E 2013 Euro. Lett. 102 68004

    [20]

    Dong G G, Tian L X, Du R J, Stanley H E 2014 Physica A 394 370

    [21]

    Segovia-Juarez J L, Colombano S, Kirschner D 2007 Biosystems 87 117

    [22]

    Akram M, Dudek W A 2013 Inform. Sci. 218 182

    [23]

    Rangasamy P, Akram M, Thilagavathi S 2013 Inform. Process. Lett. 113 599

    [24]

    Segovia-Juarez J L, Colombano S 2003 BioSystems 68 187

    [25]

    Berge C, Minieka E 1973 Graph and Hypergraph (North Holland: North-Holland Publishing Company Amsterdam) pp389-413

    [26]

    Berge C, Sterboul F 1977 J. Comb. Theory B 22 97

    [27]

    Estrada E, Rodrguez-Velzquez J A 2006 Physica A 364 581

    [28]

    Volpentesta, A P 2008 Eur. J. Oper. Res. 188 390

    [29]

    Pretolani D 2013 Eur. J. Oper. Res. 230 226

    [30]

    Ghosal G, Zlatić V, Caldarelli G, Newman M E J 2009 Phys. Rev. E 79 066118

    [31]

    Zlatić V, Ghoshal G, Caldarelli G 2009 Phys. Rev. E 80 036118

    [32]

    Neubauer N, Obermayer K 2009 HT 09 Torino, Italy, June 29-July 1, 2009

    [33]

    Bretto A 2013 Hypergraph Theory: An Introduction (New York: Springer Science Business Media)

    [34]

    Peng X Z, Yao H, Du J, Wang Z, Ding C 2015 Acta Phys. Sin. 64 048901 (in Chinese) [彭兴钊, 姚宏, 杜军, 王哲, 丁超 2015 64 048901]

    [35]

    Chen S M, L H, Xu Q G, Xu Y F, Lai Q 2015 Acta Phys. Sin. 64 048902 (in Chinese) [陈世明, 吕辉, 徐青刚, 许云飞, 赖强 2015 64 048902]

    [36]

    Ding L, Zhang S Y 2012 Comput. Sci. 39 8 (in Chinese) [丁琳, 张嗣瀛 2012 计算机科学 39 8]

    [37]

    Kanoko K 1992 Couple Map Lattice (Singapore: World Scientific)

    [38]

    Wang X F, Xu J 2004 Phys. Rev. E 70 056113

    [39]

    Xu J, Wang X F 2005 Physica A 349 685

  • [1]

    Wang J J, Rong L L, Deng Q H, Zhang J Y 2010 Eur. Phys. J. B 77 493

    [2]

    Zhang Z K, Liu C 2010 J. Stat. Mech. -Theory E 2010 10005

    [3]

    Krawiecki A 2013 Acta Phys. Polon. A 123

    [4]

    Gmez-Gardees J, Reinares I, Arenas A, Flora L M 2012 Sci. Reports 2 620

    [5]

    Hu F, Zhao H X, Ma X J 2013 Sci. Sin.: Phys. Mech. Astron. 43 16 (in Chinese) [胡枫, 赵海兴, 马秀娟 2013 中国科学: 物理学 力学 天文学 43 16]

    [6]

    Hu F, Zhao H X, He J B, Li F X, Li S L, Zhang Z K 2013 Acta Phys. Sin. 62 198901 (in Chinese) [胡枫, 赵海兴, 何佳培, 李发旭, 李淑玲, 张子柯 2013 62 198901]

    [7]

    Yang G Y, Liu J G 2014 Chin. Phys. B 23 018901

    [8]

    Liu J G, Yang G Y, Hu Z L 2014 PLoS One 9 e89746

    [9]

    Pei W D, Xia W, Wang Q L, et al. 2010 J. Univ. Sci. Technol. China 40 1186 (in Chinese) [裴伟东, 夏玮, 王全来 等 2010 中国科学技术大学学报 40 1186]

    [10]

    Sorrentino F 2012 New J. Phys. 14 033035

    [11]

    Wu Z Y, Duan J Q, Fu X C 2014 Appl. Math. Model 38 2961

    [12]

    Krawiecki A 2014 Chaos, Soliton. Fract. 65 44

    [13]

    Gmez S, Daz-Guilera A, Gmez-Gardees J, Prez-Vicente C J, Moreno Y, Arenas A 2013 Phys. Rev. Lett. 110 028701

    [14]

    Wang J P, G Q, Yang G Y, Liu J G 2015 Physica A 428 250

    [15]

    Yang G Y, Hu Z L, Liu J G 2015 Physica A 419 429

    [16]

    Sol-Ribalta A, Domenico de M, Gmez S, Arenas A 2013 arXiv preprint arXiv:1506.07165 [physics.soc-ph]

    [17]

    Buldyrev S V, Parshani R, Paul G, Stanley H E, Havlin S 2010 Nature 464 1025

    [18]

    Dong G G, Gao J X, Du R J, Tian L X, Stanley H E, Havlin S 2013 Phys. Rev. E 87 052804

    [19]

    Dong G G, Tian L X, Zhou D, Du R J, Xiao J, Stanley H E 2013 Euro. Lett. 102 68004

    [20]

    Dong G G, Tian L X, Du R J, Stanley H E 2014 Physica A 394 370

    [21]

    Segovia-Juarez J L, Colombano S, Kirschner D 2007 Biosystems 87 117

    [22]

    Akram M, Dudek W A 2013 Inform. Sci. 218 182

    [23]

    Rangasamy P, Akram M, Thilagavathi S 2013 Inform. Process. Lett. 113 599

    [24]

    Segovia-Juarez J L, Colombano S 2003 BioSystems 68 187

    [25]

    Berge C, Minieka E 1973 Graph and Hypergraph (North Holland: North-Holland Publishing Company Amsterdam) pp389-413

    [26]

    Berge C, Sterboul F 1977 J. Comb. Theory B 22 97

    [27]

    Estrada E, Rodrguez-Velzquez J A 2006 Physica A 364 581

    [28]

    Volpentesta, A P 2008 Eur. J. Oper. Res. 188 390

    [29]

    Pretolani D 2013 Eur. J. Oper. Res. 230 226

    [30]

    Ghosal G, Zlatić V, Caldarelli G, Newman M E J 2009 Phys. Rev. E 79 066118

    [31]

    Zlatić V, Ghoshal G, Caldarelli G 2009 Phys. Rev. E 80 036118

    [32]

    Neubauer N, Obermayer K 2009 HT 09 Torino, Italy, June 29-July 1, 2009

    [33]

    Bretto A 2013 Hypergraph Theory: An Introduction (New York: Springer Science Business Media)

    [34]

    Peng X Z, Yao H, Du J, Wang Z, Ding C 2015 Acta Phys. Sin. 64 048901 (in Chinese) [彭兴钊, 姚宏, 杜军, 王哲, 丁超 2015 64 048901]

    [35]

    Chen S M, L H, Xu Q G, Xu Y F, Lai Q 2015 Acta Phys. Sin. 64 048902 (in Chinese) [陈世明, 吕辉, 徐青刚, 许云飞, 赖强 2015 64 048902]

    [36]

    Ding L, Zhang S Y 2012 Comput. Sci. 39 8 (in Chinese) [丁琳, 张嗣瀛 2012 计算机科学 39 8]

    [37]

    Kanoko K 1992 Couple Map Lattice (Singapore: World Scientific)

    [38]

    Wang X F, Xu J 2004 Phys. Rev. E 70 056113

    [39]

    Xu J, Wang X F 2005 Physica A 349 685

  • [1] 刘波, 曾钰洁, 杨荣湄, 吕琳媛. 高阶网络统计指标综述.  , 2024, 73(12): 128901. doi: 10.7498/aps.73.20240270
    [2] 陈蔚颖, 潘建臣, 韩文臣, 黄昌巍. 具有异质增益因子的超图上的演化公共品博弈.  , 2022, 71(11): 110201. doi: 10.7498/aps.70.20212436
    [3] 卢文, 赵海兴, 孟磊, 胡枫. 具有双峰特性的双层超网络模型.  , 2021, 70(1): 018901. doi: 10.7498/aps.70.20201065
    [4] 金学广, 寿国础, 胡怡红, 郭志刚. 面向成本-收益好的无标度耦合网络构建方法.  , 2016, 65(9): 098901. doi: 10.7498/aps.65.098901
    [5] 刘彬, 董明如, 刘浩然, 尹荣荣, 韩丽. 基于综合故障的无线传感器网络无标度容错拓扑模型研究.  , 2014, 63(17): 170506. doi: 10.7498/aps.63.170506
    [6] 段东立, 战仁军. 基于相继故障信息的网络节点重要度演化机理分析.  , 2014, 63(6): 068902. doi: 10.7498/aps.63.068902
    [7] 郭进利. 非均齐超网络中标度律的涌现富者愈富导致幂律分布吗?.  , 2014, 63(20): 208901. doi: 10.7498/aps.63.208901
    [8] 郭进利, 祝昕昀. 超网络中标度律的涌现.  , 2014, 63(9): 090207. doi: 10.7498/aps.63.090207
    [9] 彭兴钊, 姚宏, 杜军, 丁超, 张志浩. 基于时滞耦合映像格子的多耦合边耦合网络级联抗毁性研究.  , 2014, 63(7): 078901. doi: 10.7498/aps.63.078901
    [10] 胡枫, 赵海兴, 何佳倍, 李发旭, 李淑玲, 张子柯. 基于超图结构的科研合作网络演化模型.  , 2013, 62(19): 198901. doi: 10.7498/aps.62.198901
    [11] 谭红芳, 金涛, 屈世显. 一个全局耦合不连续映像格子中的冻结化随机图案模式.  , 2012, 61(4): 040507. doi: 10.7498/aps.61.040507
    [12] 王开, 裴文江, 周建涛, 张毅峰, 周思源. 一类时空混沌加解密系统的安全分析.  , 2011, 60(7): 070503. doi: 10.7498/aps.60.070503
    [13] 王开, 裴文江, 张毅峰, 周思源, 邵硕. 基于符号向量动力学的耦合映像格子参数估计.  , 2011, 60(7): 070502. doi: 10.7498/aps.60.070502
    [14] 沈民奋, 林兰馨, 李小艳, 常春起. 基于符号动力学的耦合映像格子系统的初值估计.  , 2009, 58(5): 2921-2929. doi: 10.7498/aps.58.2921
    [15] 王建伟, 荣莉莉. 基于负荷局域择优重新分配原则的复杂网络上的相继故障.  , 2009, 58(6): 3714-3721. doi: 10.7498/aps.58.3714
    [16] 刘建东, 余有明. 基于可变参数双向耦合映像系统的时空混沌Hash函数设计.  , 2007, 56(3): 1297-1304. doi: 10.7498/aps.56.1297
    [17] 王 开, 裴文江, 夏海山, 何振亚. 基于符号向量动力学的耦合映像格子初始向量估计.  , 2007, 56(7): 3766-3770. doi: 10.7498/aps.56.3766
    [18] 庞 全, 武 薇, 范影乐. 基于多重耦合映像格子的信号初值恢复研究.  , 2007, 56(12): 6836-6842. doi: 10.7498/aps.56.6836
    [19] 刘 英, 沈民奋, 陈和晏. 基于时变耦合映像格子模型的信号初值估计.  , 2006, 55(2): 564-571. doi: 10.7498/aps.55.564
    [20] 蒋品群, 汪秉宏, 夏清华, 卜寿亮. 耦合映像格子中时空混沌的状态反馈控制.  , 2004, 53(10): 3280-3286. doi: 10.7498/aps.53.3280
计量
  • 文章访问数:  7324
  • PDF下载量:  371
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-09
  • 修回日期:  2016-01-04
  • 刊出日期:  2016-04-05

/

返回文章
返回
Baidu
map