搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于间断有限元方法的并列圆柱层流流动特性

张忠宇 姚熊亮 张阿漫

引用本文:
Citation:

基于间断有限元方法的并列圆柱层流流动特性

张忠宇, 姚熊亮, 张阿漫

Numerical simulation of laminar flow past two side-by-side cylinders by discontinuous Galerkin method

Zhang Zhong-Yu, Yao Xiong-Liang, Zhang A-Man
PDF
导出引用
  • 基于高阶的间断有限元方法, 数值模拟低马赫数下并列圆柱的可压缩层流流动, 捕捉并列圆柱流场中的漩涡结构, 以便分析并列圆柱尾流的流动特性. 针对二维圆柱的边界形式, 采用曲边三角形单元构造二维圆柱的曲面边界, 以适应高阶离散格式的精度. 在验证方法合理性的基础上, 分析圆柱间距及雷诺数对漩涡脱落及受力特性的影响规律. 研究结果表明: 并列圆柱的间距是影响流场流动特性的一个主要因素, 它会改变圆柱漩涡脱落的形式. 随着圆柱间距的增加, 上下圆柱的平均阻力系数及平均升力系数的绝对值随之显著下降. 雷诺数对于平均阻力系数的影响相对较小. 但随着雷诺数的增加, 上下圆柱的平均升力系数会随之降低, 而漩涡的脱落频率会随之增大.
    Investigations of vortex dynamics about two circular cylinders in a side-by-side arrangement help the understanding of flows around more complex structures, which are found to have many engineering applications. These applications involve offshore structures, power generation, micro-turbine engines, cooling towers, and paper machine forming fabrics, etc. Therefore, two-dimensional compressible laminar flows over two cylinders in side-by-side arrangement are numerically investigated at low Reynolds number. The high-order discontinuous Galerkin method is employed to simulate the flow, which combines the advantages associated with finite element and finite volume methods. As in classical finite element method, the spatial accuracy can be obtained by the high-order polynomial approximation within an element rather than by stencils as in finite volume method. The curved triangle is used to represent the wall boundary of cylinder to maintain the high-order accurate simulation. Then the characteristics of the wake flow are identified by capturing the vortex structure. After verifying the rationality of the method, the influences of gap spacing on vortex shedding and mechanical characteristics are analyzed. The results reveal that the flow depends to a large extent on the gap spacing between the two cylinders, which can change the vortex shedding pattern. At the gap spacing S*=1.1, wake flow pattern resembles the vortex street of a single bluff body. The flow in the gap is too weak to affect the wake pattern, leading to the complete suppression of vortices shed on the gap sides of both cylinders. At the gap spacing S*=1.4, the results reveal that the gap flow is deflected from one cylinder to another. Meanwhile, the wakes represent randomly flip-flopping between two states of the gap flow direction, which is called the flip-flopping wake pattern. The flow is no longer periodic but becomes drastically unsteady. Anti-symmetric flow pattern is predicted for gap spacing S*=2.5, indicating that two parallel vortex streets are anti-symmetric with respect to the centerline. With further increasing the gap spacing to S*=4, the symmetric flow pattern is observed. Furthermore, the flow preserves its structure very far downstream without any distortion. With the increase of the cylinder spacing, the average drag coefficients are declined significantly, and the absolute value of average lift coefficient decreases simultaneously. The Reynolds number has a little influence on the average drag coefficient. As the Reynolds number increases, the average lift coefficient decreases, while the vortex shedding frequency increases.
      通信作者: 张忠宇, zhangyu061031@126.com
    • 基金项目: 国家自然科学基金 (批准号: U1430236, 51479041)资助的课题.
      Corresponding author: Zhang Zhong-Yu, zhangyu061031@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1430236, 51479041).
    [1]

    Chen Y, Fu S X, Xu Y W, Zhou Q, Fan D X 2013 Acta Phys. Sin. 62 064701 (in Chinese) [陈蓥, 付世晓, 许玉旺, 周青, 范迪夏 2013 62 064701]

    [2]

    Huang Z, Olson J A, Kerekes R J, Green S I 2006 Comput. Fluids 35 485

    [3]

    Williamson C H K 1985 J. Fluid Mech. 159 1

    [4]

    Sumner D, Wong S S T, Price S J, Paidoussis M P 1999 J. Fluid. Struct. 13 309

    [5]

    Zdravkovich M M 1977 J. Fluid. Eng. 99 618

    [6]

    Meneghini J R, Saltara F, Siqueira C L R, Ferrari J A 2001 J. Fluid. Struct. 15 327

    [7]

    Ding H, Shu C, Yeo K S, Xu D 2007 Int. J. Numer. Meth. Fl. 53 305

    [8]

    Chen L, Tu J Y, Yeoh G H 2003 J. Fluid. Struct. 18 387

    [9]

    Dong P, Feng S D, Zhao Y 2004 Chin. Phys. B 13 434

    [10]

    Zhang W, Wang Y, Qian Y H 2015 Chin. Phys. B 24 064701

    [11]

    Liang D W, Huang G P 2004 Gas. Turb. Exp. Res. 17 9 (in Chinese) [梁德旺, 黄国平 2004 燃气涡轮试验与研究 17 9]

    [12]

    Liang C, Premasuthan S, Jameson A 2009 Comput. Struct. 87 812

    [13]

    Reed W H, Hill T R 1973 Los Alamos Report 73 479

    [14]

    Cockburn B, Shu C W 1991 Math. Model. Num. 25 337

    [15]

    Bassi F, Rebay S 1997 J. Comput. Phys. 131 267

    [16]

    Cockburn B, Shu C W 1989 Math. Comput. 52 411

    [17]

    Peraire J, Persson P O 2008 Siam J. Sci. Comput. 30 1806

    [18]

    Bassi F, Crivellini A, Rebay S, Savini M 2005 Comput. Fluids 34 507

    [19]

    Yu J, Yan C 2010 Acta Mech. Sin. 5 962 (in Chinese) [于剑, 阎超2010 力学学报 5 962]

    [20]

    Toro, Eleuterio F 2009 Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (Netherlands: Springer Science Business Media) pp315-336

    [21]

    Luo H, Baum J D, Lohner R 2008 J. Comput. Phys. 227 8875

    [22]

    Luo H, Segawa H, Visbal M R 2012 Comput. Fluids 53 133

    [23]

    Roshko A 1954 On the Drag and Shedding Frequency of Two-Dimensional Bluff Bodies (Washington DC: National Aeronautics and Space Administration) p129

    [24]

    Nicolle A, Eames I 2011 J. Fluid Mech. 679 1

    [25]

    Kim H J 1988 J. Fluid Mech. 196 431

    [26]

    Zhou Y, Zhang H J, Yiu M W 2002 J. Fluid Mech. 458 303

  • [1]

    Chen Y, Fu S X, Xu Y W, Zhou Q, Fan D X 2013 Acta Phys. Sin. 62 064701 (in Chinese) [陈蓥, 付世晓, 许玉旺, 周青, 范迪夏 2013 62 064701]

    [2]

    Huang Z, Olson J A, Kerekes R J, Green S I 2006 Comput. Fluids 35 485

    [3]

    Williamson C H K 1985 J. Fluid Mech. 159 1

    [4]

    Sumner D, Wong S S T, Price S J, Paidoussis M P 1999 J. Fluid. Struct. 13 309

    [5]

    Zdravkovich M M 1977 J. Fluid. Eng. 99 618

    [6]

    Meneghini J R, Saltara F, Siqueira C L R, Ferrari J A 2001 J. Fluid. Struct. 15 327

    [7]

    Ding H, Shu C, Yeo K S, Xu D 2007 Int. J. Numer. Meth. Fl. 53 305

    [8]

    Chen L, Tu J Y, Yeoh G H 2003 J. Fluid. Struct. 18 387

    [9]

    Dong P, Feng S D, Zhao Y 2004 Chin. Phys. B 13 434

    [10]

    Zhang W, Wang Y, Qian Y H 2015 Chin. Phys. B 24 064701

    [11]

    Liang D W, Huang G P 2004 Gas. Turb. Exp. Res. 17 9 (in Chinese) [梁德旺, 黄国平 2004 燃气涡轮试验与研究 17 9]

    [12]

    Liang C, Premasuthan S, Jameson A 2009 Comput. Struct. 87 812

    [13]

    Reed W H, Hill T R 1973 Los Alamos Report 73 479

    [14]

    Cockburn B, Shu C W 1991 Math. Model. Num. 25 337

    [15]

    Bassi F, Rebay S 1997 J. Comput. Phys. 131 267

    [16]

    Cockburn B, Shu C W 1989 Math. Comput. 52 411

    [17]

    Peraire J, Persson P O 2008 Siam J. Sci. Comput. 30 1806

    [18]

    Bassi F, Crivellini A, Rebay S, Savini M 2005 Comput. Fluids 34 507

    [19]

    Yu J, Yan C 2010 Acta Mech. Sin. 5 962 (in Chinese) [于剑, 阎超2010 力学学报 5 962]

    [20]

    Toro, Eleuterio F 2009 Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (Netherlands: Springer Science Business Media) pp315-336

    [21]

    Luo H, Baum J D, Lohner R 2008 J. Comput. Phys. 227 8875

    [22]

    Luo H, Segawa H, Visbal M R 2012 Comput. Fluids 53 133

    [23]

    Roshko A 1954 On the Drag and Shedding Frequency of Two-Dimensional Bluff Bodies (Washington DC: National Aeronautics and Space Administration) p129

    [24]

    Nicolle A, Eames I 2011 J. Fluid Mech. 679 1

    [25]

    Kim H J 1988 J. Fluid Mech. 196 431

    [26]

    Zhou Y, Zhang H J, Yiu M W 2002 J. Fluid Mech. 458 303

  • [1] 王伟华. 二维有限元方法研究石墨烯环中磁等离激元.  , 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [2] 曾滔, 董雨晨, 王天昊, 田龙, 黄楚怡, 唐健, 张俊佩, 余羿, 童欣, 樊群超. 极化中子散射零磁场屏蔽体的有限元分析.  , 2023, 72(14): 142801. doi: 10.7498/aps.72.20230559
    [3] 林茜, 谢普初, 胡建波, 张凤国, 王裴, 王永刚. 不同晶粒度高纯铜层裂损伤演化的有限元模拟.  , 2021, 70(20): 204601. doi: 10.7498/aps.70.20210726
    [4] 王存海, 郑树, 张欣欣. 非规则形状介质内辐射-导热耦合传热的间断有限元求解.  , 2020, 69(3): 034401. doi: 10.7498/aps.69.20191185
    [5] 张保磊, 王家序, 肖科, 李俊阳. 石墨烯-纳米探针相互作用有限元准静态计算.  , 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [6] 潘安, 范军, 卓琳凯. 准周期加隔板有限长圆柱壳声散射.  , 2013, 62(2): 024301. doi: 10.7498/aps.62.024301
    [7] 徐润汶, 郭立新, 范天奇. 有限元/边界积分方法在海面及其上方弹体目标电磁散射中的应用.  , 2013, 62(17): 170301. doi: 10.7498/aps.62.170301
    [8] 潘安, 范军, 卓琳凯. 周期性加隔板有限长圆柱壳声散射.  , 2012, 61(21): 214301. doi: 10.7498/aps.61.214301
    [9] 赵国忠, 蔚喜军. 统一坐标系下二维气动方程组的Runge-Kutta间断Galerkin有限元方法.  , 2012, 61(11): 110208. doi: 10.7498/aps.61.110208
    [10] 王运华, 张彦敏, 郭立新. 两相邻有限长圆柱的复合电磁散射研究.  , 2011, 60(2): 021102. doi: 10.7498/aps.60.021102
    [11] 蒙志君, 王立峰, 吕明云, 武哲. 曲率对有限曲面狭缝阵列传输特性的影响.  , 2011, 60(1): 017301. doi: 10.7498/aps.60.017301
    [12] 陆海鹏, 韩满贵, 邓龙江, 梁迪飞, 欧雨. Co纳米线磁矩反转动态过程的有限元微磁学模拟.  , 2010, 59(3): 2090-2096. doi: 10.7498/aps.59.2090
    [13] 孙宏祥, 许伯强, 王纪俊, 徐桂东, 徐晨光, 王峰. 激光激发黏弹表面波有限元数值模拟.  , 2009, 58(9): 6344-6350. doi: 10.7498/aps.58.6344
    [14] 周旺民, 蔡承宇, 王崇愚, 尹姝媛. 埋置量子点应力分布的有限元分析.  , 2009, 58(8): 5585-5590. doi: 10.7498/aps.58.5585
    [15] 冯永平, 崔俊芝, 邓明香. 周期孔洞区域中热力耦合问题的双尺度有限元计算.  , 2009, 58(13): 327-S337. doi: 10.7498/aps.58.327
    [16] 汤 波, 李俊峰, 王天舒. 水珠滴落的最小二乘粒子有限元方法模拟.  , 2008, 57(11): 6722-6729. doi: 10.7498/aps.57.6722
    [17] 梁 双, 吕燕伍. 有限元法计算GaN/AlN量子点结构中的电子结构.  , 2007, 56(3): 1617-1620. doi: 10.7498/aps.56.1617
    [18] 赵 艳, 沈中华, 陆 建, 倪晓武. 激光在管道中激发周向导波的有限元模拟.  , 2007, 56(1): 321-326. doi: 10.7498/aps.56.321
    [19] 杜启振, 杨慧珠. 方位各向异性黏弹性介质波场有限元模拟.  , 2003, 52(8): 2010-2014. doi: 10.7498/aps.52.2010
    [20] 徐璋本. 能源策动的天线的普遍边界条件和它们对一个有限圆柱形天线的应用.  , 1956, 12(4): 298-318. doi: 10.7498/aps.12.298
计量
  • 文章访问数:  6157
  • PDF下载量:  216
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-30
  • 修回日期:  2016-01-11
  • 刊出日期:  2016-04-05

/

返回文章
返回
Baidu
map