搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MnTe电子结构和磁性的第一性原理研究

王步升 刘永

引用本文:
Citation:

MnTe电子结构和磁性的第一性原理研究

王步升, 刘永

Electronic structure and magnetic properties of MnTe from first-principles calculations

Wang Bu-Sheng, Liu Yong
PDF
导出引用
  • 采用基于密度泛函理论的赝势投影缀加波方法, 对六种典型的二元晶体结构Rocksalt (RS), Cesiun-chloride (CC), Zinc-blende (ZB), Wurtzite (WZ), Iron-silicide (IS) 和Nickel-Arsenide (NA)的MnTe进行了计算研究. 通过比较六种结构的结合能, 确定了MnTe的基态结构是反铁磁的NA结构. 研究了这六种结构MnTe的电子结构、磁性, 并用Birch-Murnaghan状态方程拟合求得了各相结构的体弹性模量和相变压. 电子态密度表明, RS, CC和IS结构的MnTe为反铁磁导体, ZB, WZ和NA结构的MnTe均为反铁磁半导体.
    Based on density functional theory (DFT) together with the projector augmented wave (PAW) method, we systematically investigate the structural, magnetic and electronic properties of the chalcogenide MnTe in six competing structures: rocksalt (RS), cesiun-chloride (CC), zinc-blende (ZB), wurtzite (WZ), iron-silicide (IS) and nickel-arsenide (NA). The ground state of MnTe is completely determined. And the structural parameters, magnetic properties, bulk modulus, phase transition pressure, and the density of states are studied, too. The density of states shows that MnTe in RS, CC and IS structures are antiferromagnetic conductors, and MnTe in WZ, ZB and NA are antiferromagnetic semiconductors. These results provide us the possibility to apply them to the spintronics of antiferromagnetic systems.
      通信作者: 刘永, ycliu@ysu.edu.cn
    • 基金项目: 河北省教育厅自然科学研究重点项目(批准号: ZD2014015)和河北省自然科学基金(批准号: A2015203021)资助的课题.
      Corresponding author: Liu Yong, ycliu@ysu.edu.cn
    • Funds: Research supported by the Key Project of Education Department of Hebei Province, China(Grant No. ZD2014015), and the Natural Science Foundation of Hebei Province, China(Grant No. A2015203021).
    [1]

    Shen X C, Ye H J, Kang L X, Tao F X 1985 Acta Phys. Sin. 34 1573 (in Chinese) [沈学础, 叶红娟, 康荔学, 陶凤翔 1985 34 1573]

    [2]

    Allen J W, Lucovsky G, Mikkelsen J C 1977 Solid State Commun. 24 367

    [3]

    Banewicz J J, Heidelberg R F 1961 J. Phys. Chem. 65 615

    [4]

    Goswami A, Mandale A B 1978 Jpn. J. Appl. Phys. 17 473

    [5]

    Nakamura K, Kato Y, Akiyama T, Ito T, Freeman A J 2006 Phys. Rev. Lett. 96 047206

    [6]

    Sharma R K, Singh G, Shul Y G, Kim H 2007 J. Phys. Condens. Mat. 390 314

    [7]

    Szuszkiewicz W, Dynowska E, Witkowska B, Hennion B 2006 Phys. Rev. B 73 104403

    [8]

    Wei S H, Zunger A 1987 Phys. Rev. B 35 2340

    [9]

    Johnston W D, Sestrich D E 1961 J. Inorg. Nucl. Chem. 19 229

    [10]

    Youn S J, Min B I, Freeman A J 2004 Phys. Status Solidi B 241 1411

    [11]

    Kim B, Kim I., Min B K, Oh M, Park S, Lee H 2013 Electron. Mater. Lett. 9 477

    [12]

    Podgorny M, Oleszkiewicz J 1983 J. Phys. C 16 2547

    [13]

    Li Y B, Zhang Y Q, Sun N K, Zhang Q, Li D, Li J, Zhang Z D 2005 Phys. Rev. B 72 193308

    [14]

    Masroura R, Hlil E K, Hamedoun M, Benyoussef A, Mounkachid O 2012 Chin. Phys. B 21 127101

    [15]

    Snger I, Yakovlev D R, Kaminski B, Pisarev R V, Pavlov V V, Bayer M 2006 Phys. Rev. B 74 165208

    [16]

    Segev D, Wei S H 2004 Phys. Rev. B 70 184401

    [17]

    Wang Z H, Geng D Y, Gong W J, Li J, Li Y B, Zhang Z D 2012 Thin Solid Films 522 175

    [18]

    Wang Z H, Geng D Y, Li J, Li Y B, Zhang Z D 2014 J. Mater. Sci. Technol. 30 103

    [19]

    Long N H, Akai H 2007 J. Supercond. Nov. Magn. 20 473

    [20]

    Tan G J, Shi F G, Hao S Q, Chi H, Bailey T P, Zhao L D, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2015 J. Am. Chem. Soc. 137 11507

    [21]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [23]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [24]

    Adolph B, Furthmller J, Bechstedt F 2001 Phys. Rev. B 63 125108

    [25]

    Blchl P E 1994 Phys. Rev. B 50 17953

    [26]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [27]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [28]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [29]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [30]

    Balzarotti A, Czyzyk M, Kisiel A, Motta N, Podgorny M, Zimnal-Starnawska M 1984 Phys. Rev. B 30 2295

    [31]

    Yoder-Short D R, Debska U, Furdyna J K 1985 J. Appl. Phys. 58 4056

    [32]

    Zhu L F, Liu B G 2009 Phys. Status Solidi B 246 1094

    [33]

    Gonzalez S N, Przezdziecka E, Dynowska E, Boguslawski P, Kossut J 2004 Acta Phys. Pol. A 106 233

    [34]

    Sato H, Taniguchi M, Mimura K, Senba S, Namatame H, Ueda Y 2000 Phys. Rev. B 61 10622

    [35]

    Anisimov V I, Aryasetiawan F, Lichtenstein A I 1997 J. Phys. : Condens. Mat. 9 767

  • [1]

    Shen X C, Ye H J, Kang L X, Tao F X 1985 Acta Phys. Sin. 34 1573 (in Chinese) [沈学础, 叶红娟, 康荔学, 陶凤翔 1985 34 1573]

    [2]

    Allen J W, Lucovsky G, Mikkelsen J C 1977 Solid State Commun. 24 367

    [3]

    Banewicz J J, Heidelberg R F 1961 J. Phys. Chem. 65 615

    [4]

    Goswami A, Mandale A B 1978 Jpn. J. Appl. Phys. 17 473

    [5]

    Nakamura K, Kato Y, Akiyama T, Ito T, Freeman A J 2006 Phys. Rev. Lett. 96 047206

    [6]

    Sharma R K, Singh G, Shul Y G, Kim H 2007 J. Phys. Condens. Mat. 390 314

    [7]

    Szuszkiewicz W, Dynowska E, Witkowska B, Hennion B 2006 Phys. Rev. B 73 104403

    [8]

    Wei S H, Zunger A 1987 Phys. Rev. B 35 2340

    [9]

    Johnston W D, Sestrich D E 1961 J. Inorg. Nucl. Chem. 19 229

    [10]

    Youn S J, Min B I, Freeman A J 2004 Phys. Status Solidi B 241 1411

    [11]

    Kim B, Kim I., Min B K, Oh M, Park S, Lee H 2013 Electron. Mater. Lett. 9 477

    [12]

    Podgorny M, Oleszkiewicz J 1983 J. Phys. C 16 2547

    [13]

    Li Y B, Zhang Y Q, Sun N K, Zhang Q, Li D, Li J, Zhang Z D 2005 Phys. Rev. B 72 193308

    [14]

    Masroura R, Hlil E K, Hamedoun M, Benyoussef A, Mounkachid O 2012 Chin. Phys. B 21 127101

    [15]

    Snger I, Yakovlev D R, Kaminski B, Pisarev R V, Pavlov V V, Bayer M 2006 Phys. Rev. B 74 165208

    [16]

    Segev D, Wei S H 2004 Phys. Rev. B 70 184401

    [17]

    Wang Z H, Geng D Y, Gong W J, Li J, Li Y B, Zhang Z D 2012 Thin Solid Films 522 175

    [18]

    Wang Z H, Geng D Y, Li J, Li Y B, Zhang Z D 2014 J. Mater. Sci. Technol. 30 103

    [19]

    Long N H, Akai H 2007 J. Supercond. Nov. Magn. 20 473

    [20]

    Tan G J, Shi F G, Hao S Q, Chi H, Bailey T P, Zhao L D, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2015 J. Am. Chem. Soc. 137 11507

    [21]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [23]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [24]

    Adolph B, Furthmller J, Bechstedt F 2001 Phys. Rev. B 63 125108

    [25]

    Blchl P E 1994 Phys. Rev. B 50 17953

    [26]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [27]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [28]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [29]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [30]

    Balzarotti A, Czyzyk M, Kisiel A, Motta N, Podgorny M, Zimnal-Starnawska M 1984 Phys. Rev. B 30 2295

    [31]

    Yoder-Short D R, Debska U, Furdyna J K 1985 J. Appl. Phys. 58 4056

    [32]

    Zhu L F, Liu B G 2009 Phys. Status Solidi B 246 1094

    [33]

    Gonzalez S N, Przezdziecka E, Dynowska E, Boguslawski P, Kossut J 2004 Acta Phys. Pol. A 106 233

    [34]

    Sato H, Taniguchi M, Mimura K, Senba S, Namatame H, Ueda Y 2000 Phys. Rev. B 61 10622

    [35]

    Anisimov V I, Aryasetiawan F, Lichtenstein A I 1997 J. Phys. : Condens. Mat. 9 767

  • [1] 李巧利, 李慎慎, 肖继军, 陈兆旭. 静水压力作用下(H2dabco)[K(ClO4)3]结构与稳定性的第一性原理研究.  , 2024, 73(14): 143101. doi: 10.7498/aps.73.20240477
    [2] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算.  , 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [3] 宋庆功, 赵俊普, 顾威风, 甄丹丹, 郭艳蕊, 李泽朋. 基于密度泛函理论的La掺杂-TiAl体系结构延性与电子性质.  , 2017, 66(6): 066103. doi: 10.7498/aps.66.066103
    [4] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响.  , 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [5] 吕瑾, 杨丽君, 王艳芳, 马文瑾. Al2Sn(n=210)团簇结构特征和稳定性的密度泛函理论研究.  , 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [6] 余本海, 陈东. 用密度泛函理论研究氮化硅新相的电子结构、光学性质和相变.  , 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [7] 潘敏, 黄整, 赵勇. 强关联效应下非磁性元素Ir掺杂的SmFeAsO电子结构理论研究.  , 2013, 62(21): 217401. doi: 10.7498/aps.62.217401
    [8] 徐莹莹, 阚玉和, 武洁, 陶委, 苏忠民. 并苯纳米环[6]CA及其衍生物的电子结构和光物理性质的密度泛函理论研究.  , 2013, 62(8): 083101. doi: 10.7498/aps.62.083101
    [9] 曹青松, 袁勇波, 肖传云, 陆瑞锋, 阚二军, 邓开明. C80H80几何结构和电子性质的密度泛函研究.  , 2012, 61(10): 106101. doi: 10.7498/aps.61.106101
    [10] 范冰冰, 王利娜, 温合静, 关莉, 王海龙, 张锐. 水分子链受限于单壁碳纳米管结构的密度泛函理论研究.  , 2011, 60(1): 012101. doi: 10.7498/aps.60.012101
    [11] 张致龙, 陈玉红, 任宝兴, 张材荣, 杜瑞, 王伟超. (HMgN3)n(n=15)团簇结构与性质的密度泛函理论研究.  , 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [12] 孙建敏, 赵高峰, 王献伟, 杨雯, 刘岩, 王渊旭. Cu吸附(SiO3)n(n=1—8)团簇几何结构和电子性质的密度泛函研究.  , 2010, 59(11): 7830-7837. doi: 10.7498/aps.59.7830
    [13] 高虹, 朱卫华, 唐春梅, 耿芳芳, 姚长达, 徐云玲, 邓开明. 内掺氮富勒烯N2@C60的几何结构和电子性质的密度泛函计算研究.  , 2010, 59(3): 1707-1711. doi: 10.7498/aps.59.1707
    [14] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究.  , 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [15] 陈亮, 徐灿, 张小芳. 氧化镁纳米管团簇电子结构的密度泛函研究.  , 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [16] 李喜波, 王红艳, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究ScnO(n=1—9)团簇的结构、稳定性与电子性质.  , 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [17] 陈玉红, 康 龙, 张材荣, 罗永春, 蒲忠胜. (Li3N)n(n=1—5)团簇结构与性质的密度泛函研究.  , 2008, 57(7): 4174-4181. doi: 10.7498/aps.57.4174
    [18] 陈玉红, 康 龙, 张材荣, 罗永春, 元丽华, 李延龙. (Ca3N2)n(n=1—4)团簇结构与性质的密度泛函理论研究.  , 2008, 57(10): 6265-6270. doi: 10.7498/aps.57.6265
    [19] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究.  , 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [20] 谭明秋, 陶向明, 徐小军, 蔡建秋. 含铀化合物UAl3和USn3电子结构的密度泛函研究.  , 2003, 52(12): 3142-3149. doi: 10.7498/aps.52.3142
计量
  • 文章访问数:  10135
  • PDF下载量:  693
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-17
  • 修回日期:  2015-12-07
  • 刊出日期:  2016-03-05

/

返回文章
返回
Baidu
map