搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

转子耦合摆系统的同步行为理论研究

方潘 侯勇俊 张丽萍 杜明俊 张梦媛

引用本文:
Citation:

转子耦合摆系统的同步行为理论研究

方潘, 侯勇俊, 张丽萍, 杜明俊, 张梦媛

Synchronous behavior of a rotor-pendulum system

Fang Pan, Hou Yong-Jun, Zhang Li-Ping, Du Ming-Jun, Zhang Meng-Yuan
PDF
导出引用
  • 转子耦合摆系统广泛应用于航空动力装置、矿业筛分机械和并联机器人等高速旋转设备. 但是对转子耦合摆系统同步行为(稳定相位差值)研究甚少, 系统同步行为通常影响系统的工作执行精度. 基于这一特殊背景, 提出了转子与摆耦合系统的简化物理模型. 利用庞加莱法研究转子耦合摆系统的同步问题, 进一步揭示了该类系统同步现象的本质机理. 首先运用拉格朗日方程建立了转子同向和反向旋转的系统动力方程, 随后将系统动力方程转换为无量纲方程. 然后利用拉普拉斯法对无量纲方程解耦, 计算出了系统各个自由度的近似稳态响应解. 继而采用庞加莱法导出了系统实现同步的平衡方程和稳定准则. 只有系统的物理参数同时满足系统同步平衡方程和稳定准则时, 系统才能实现稳定的同步行为. 通过理论研究发现, 系统的同步行为主要受弹簧刚度、摆杆安装倾角和转子旋转方向的影响. 同时系统同步临界点会造成相位差角无解, 导致系统动态特性表现为混沌. 最后, 使用计算机模拟验证了理论计算的正确性, 两者的结果相符.
    Rotor-pendulum systems are widely applied to aero-power plants, mining screening machineries, parallel robots, and other high-speed rotating equipment. However, the investigation for synchronous behavior (the computation for stable phase difference between the rotors) of a rotor-pendulum system has been reported very little. The synchronous behavior usually affects the performance precision and quality of a mechanical system. Based on the special background, a simplified physical model for a rotor-pendulum system is introduced. The system consists of a rigid vibrating body, a rigid pendulum rod, a horizontal spring, a torsion spring, and two unbalanced rotors. The vibrating body is elastically supported via the horizontal spring. One of unbalanced rotors in the system is directly mounted in the vibrating body, and the other is fixed at the end of the pendulum rod connected with the vibrating body by the torsion spring. In addition, the rotors are actuated with the identical induction motors. In this paper, we investigate the synchronous state of the system based on Poincar method, which further reveals the essential mechanism of synchronization phenomenon of this system. To determine the synchronous state of the system, the following computation technologies are implemented. Firstly, the dynamic equation of the system is derived based on the Lagrange equation with considering the homonymous and reversed rotation of the two rotors, then the equation is converted into a dimensionless equation. Further, the dimensionless equation is decoupled by the Laplace method, and the approximated steady solution and coupling coefficient of each degree of freedom are deduced. Afterwards, the balanced equation and the stability criterion of the system are acquired. Only should the values of physical parameters of the system satisfy the balanced equation and the stability criterion, the rotor-pendulum system can implement the synchronous operation. According to the theoretical computation, we can find that the spring stiffness, the installation title angle of the pendulum rod, and the rotation direction of the rotors have large influences on the existence and stability of the synchronous state in the coupling system. Meanwhile, the critical point of synchronization of the system can lead to no solution of the phase difference between the two rotors, which results in the dynamic characteristics of the system being chaotic. Finally, computer simulations are preformed to verify the correctness of the theoretical computations, and the results of theoretical computation are in accordance with the computer simulations.
      通信作者: 侯勇俊, yongjunhou@126.com
    • 基金项目: 国家自然科学基金(批准号: 51074132)和四川省科技创新苗子工程重点项目(批准号:2016RZ0059)资助的课题.
      Corresponding author: Hou Yong-Jun, yongjunhou@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51074132) and the Key Project of Talent Engineering of Sichuan, China (Grant No. 2016RZ0059).
    [1]

    Blekhman I I 1988 Synchronization in Science and Technology (New York: ASME Press)

    [2]

    Pikovsky A, Rosenblum M, Kurths J 2001 Synchronization, an Universal Concept in Nonlinear Sciences (Cambridge: Cambridge University Press)

    [3]

    Arenas A, Albert D G, Kurths J, Moreno Y, Zhou C S 2008 Phys. Rep. 469 93

    [4]

    Li Y S, L L, Liu Y, Liu S, Yan B B, Chang H, Zhou J N 2013 Acta Phys. Sin. 62 020513 (in Chinese) [李雨珊, 吕翎, 刘烨, 刘硕, 闫兵兵, 常欢, 周佳楠 2013 62 020513]

    [5]

    Yuan W J, Zhou C S 2011 Phys. Rev.E 84 016116

    [6]

    Yu H J, Liu Y Z 2005 Acta Phys. Sin. 54 3029 (in Chinese) [于洪洁, 刘延柱 2005 54 3029]

    [7]

    Qin W Y, Yang Y F, Wang H J, Ren X M 2008 Acta Phys. Sin. 57 2068 (in Chinese) [秦卫阳, 杨永锋, 王红瑾, 任兴民 2008 57 2068]

    [8]

    Pea R J, Aihara K, Fey R H B, Nijmeijer H 2014 Physica D 270 11

    [9]

    Jovanovic V, Koshkin S 2012 J. Soun. Vib. 331 2887

    [10]

    Kapitaniak M, Czolczynski K, Perlikowski P, Stefanski A, Kapitaniak T 2014 Phy. Rep. 541 1

    [11]

    Dilo R 2014 Eur. Phys. J.: Spec. Top. 223 665

    [12]

    Marcheggiani L, Chacn R, Lenci S 2014 Eur. Phys. J.: Spec. Top. 223 729

    [13]

    Wen B C, Fan J, Zhao C Y, Xiong W L 2009 Synchronization and Controled Sychronization in Engineering (Beijing: Science Press)

    [14]

    Zhao C Y, Zhang Y M, Zhang X L 2010 Chin. Phys. B 19 030301

    [15]

    Zhang X L, Wen B C, Zhao C Y 2012 Acta Mech. Sin. 28 1424

    [16]

    Sperling L, Ryzhik B, Linz C, Duckstein H 2000 Math. Comput. Simulat. 58 351

    [17]

    Balthazar J M, Felix J L P, Reyolando M L R F 2004 J. Vib. Control. 10 1739

    [18]

    Balthazar J M, Felix J L P, Reyolando M L R F 2005 Appl. Math. Comput. 164 615

    [19]

    Djanan A A N, Nbendjo B R N, Woafo P 2014 Eur. Phys. J.: Spec. Top. 223 813

    [20]

    Lacarbonara W, Arvin H, Bakhtiari-Nejad F 2012 Nonlinear Dyn. 70 659

    [21]

    Stoykov S, Ribeiro P 2013 Finite Elem. Anal. Design. 65 76

    [22]

    Warminski J, Szmit Z, Latalski J 2014 Eur. Phys. J.: Spec. Top. 223 827

    [23]

    Andreas M, Peter M 2007 Multibody Syst. Dyn. 18 259

    [24]

    Hou Y J, Zhang Z L China Patent 201110115274 [2012-12-26]

    [25]

    Fang P, Hou Y J, Yang Q M, Chen Y 2014 J. Vibroeng. 16 2188

  • [1]

    Blekhman I I 1988 Synchronization in Science and Technology (New York: ASME Press)

    [2]

    Pikovsky A, Rosenblum M, Kurths J 2001 Synchronization, an Universal Concept in Nonlinear Sciences (Cambridge: Cambridge University Press)

    [3]

    Arenas A, Albert D G, Kurths J, Moreno Y, Zhou C S 2008 Phys. Rep. 469 93

    [4]

    Li Y S, L L, Liu Y, Liu S, Yan B B, Chang H, Zhou J N 2013 Acta Phys. Sin. 62 020513 (in Chinese) [李雨珊, 吕翎, 刘烨, 刘硕, 闫兵兵, 常欢, 周佳楠 2013 62 020513]

    [5]

    Yuan W J, Zhou C S 2011 Phys. Rev.E 84 016116

    [6]

    Yu H J, Liu Y Z 2005 Acta Phys. Sin. 54 3029 (in Chinese) [于洪洁, 刘延柱 2005 54 3029]

    [7]

    Qin W Y, Yang Y F, Wang H J, Ren X M 2008 Acta Phys. Sin. 57 2068 (in Chinese) [秦卫阳, 杨永锋, 王红瑾, 任兴民 2008 57 2068]

    [8]

    Pea R J, Aihara K, Fey R H B, Nijmeijer H 2014 Physica D 270 11

    [9]

    Jovanovic V, Koshkin S 2012 J. Soun. Vib. 331 2887

    [10]

    Kapitaniak M, Czolczynski K, Perlikowski P, Stefanski A, Kapitaniak T 2014 Phy. Rep. 541 1

    [11]

    Dilo R 2014 Eur. Phys. J.: Spec. Top. 223 665

    [12]

    Marcheggiani L, Chacn R, Lenci S 2014 Eur. Phys. J.: Spec. Top. 223 729

    [13]

    Wen B C, Fan J, Zhao C Y, Xiong W L 2009 Synchronization and Controled Sychronization in Engineering (Beijing: Science Press)

    [14]

    Zhao C Y, Zhang Y M, Zhang X L 2010 Chin. Phys. B 19 030301

    [15]

    Zhang X L, Wen B C, Zhao C Y 2012 Acta Mech. Sin. 28 1424

    [16]

    Sperling L, Ryzhik B, Linz C, Duckstein H 2000 Math. Comput. Simulat. 58 351

    [17]

    Balthazar J M, Felix J L P, Reyolando M L R F 2004 J. Vib. Control. 10 1739

    [18]

    Balthazar J M, Felix J L P, Reyolando M L R F 2005 Appl. Math. Comput. 164 615

    [19]

    Djanan A A N, Nbendjo B R N, Woafo P 2014 Eur. Phys. J.: Spec. Top. 223 813

    [20]

    Lacarbonara W, Arvin H, Bakhtiari-Nejad F 2012 Nonlinear Dyn. 70 659

    [21]

    Stoykov S, Ribeiro P 2013 Finite Elem. Anal. Design. 65 76

    [22]

    Warminski J, Szmit Z, Latalski J 2014 Eur. Phys. J.: Spec. Top. 223 827

    [23]

    Andreas M, Peter M 2007 Multibody Syst. Dyn. 18 259

    [24]

    Hou Y J, Zhang Z L China Patent 201110115274 [2012-12-26]

    [25]

    Fang P, Hou Y J, Yang Q M, Chen Y 2014 J. Vibroeng. 16 2188

  • [1] 雷照康, 武耀蓉, 黄晨阳, 莫润阳, 沈壮志, 王成会, 郭建中, 林书玉. 驻波场中环状空化泡聚集结构的稳定性分析.  , 2024, 73(8): 084301. doi: 10.7498/aps.73.20231956
    [2] 王超, 刘骋远, 胡元萍, 刘志宏, 马建峰. 社交网络中信息传播的稳定性研究.  , 2014, 63(18): 180501. doi: 10.7498/aps.63.180501
    [3] 李秀平, 王善进, 陈琼, 罗诗裕. 参数激励与晶体摆动场辐射的稳定性.  , 2013, 62(22): 224102. doi: 10.7498/aps.62.224102
    [4] 鲁延玲, 蒋国平, 宋玉蓉. 自适应网络中病毒传播的稳定性和分岔行为研究.  , 2013, 62(13): 130202. doi: 10.7498/aps.62.130202
    [5] 王参军, 李江城, 梅冬成. 噪声对集合种群稳定性的影响.  , 2012, 61(12): 120506. doi: 10.7498/aps.61.120506
    [6] 张娟, 周志刚, 石玉仁, 杨红娟, 段文山. 修正KP方程及其孤波解的稳定性.  , 2012, 61(13): 130401. doi: 10.7498/aps.61.130401
    [7] 何学军, 张良欣, 任爱娣. 横向补给系统高架索的稳定性与分岔研究.  , 2010, 59(5): 3088-3092. doi: 10.7498/aps.59.3088
    [8] 刘谋斌, 常建忠. 光滑粒子动力学方法中粒子分布与数值稳定性分析.  , 2010, 59(6): 3654-3662. doi: 10.7498/aps.59.3654
    [9] 王晓娟, 龚志强, 周磊, 支蓉. 温度关联网络稳定性分析Ⅰ——极端事件的影响.  , 2009, 58(9): 6651-6658. doi: 10.7498/aps.58.6651
    [10] 罗松江, 丘水生, 骆开庆. 混沌伪随机序列的复杂度的稳定性研究.  , 2009, 58(9): 6045-6049. doi: 10.7498/aps.58.6045
    [11] 时培明, 蒋金水, 刘彬. 耦合相对转动非线性动力系统的稳定性与近似解.  , 2009, 58(4): 2147-2154. doi: 10.7498/aps.58.2147
    [12] 薛纭, 刘延柱. Kirchhoff弹性直杆在力螺旋作用下的稳定性.  , 2009, 58(10): 6737-6742. doi: 10.7498/aps.58.6737
    [13] 王作雷. 一类简化Lang-Kobayashi方程的Hopf分岔及其稳定性.  , 2008, 57(8): 4771-4776. doi: 10.7498/aps.57.4771
    [14] 王晓秋, 王保林. 嵌入La和Gd原子的Si24笼团簇的稳定性.  , 2008, 57(10): 6259-6264. doi: 10.7498/aps.57.6259
    [15] 欧阳玉, 彭景翠, 王 慧, 易双萍. 碳纳米管的稳定性研究.  , 2008, 57(1): 615-620. doi: 10.7498/aps.57.615
    [16] 邹继军, 常本康, 杨 智, 高 频, 乔建良, 曾一平. GaAs光电阴极在不同强度光照下的稳定性.  , 2007, 56(10): 6109-6113. doi: 10.7498/aps.56.6109
    [17] 李 娟, 吴春亚, 赵淑云, 刘建平, 孟志国, 熊绍珍, 张 芳. 微晶硅薄膜晶体管稳定性研究.  , 2006, 55(12): 6612-6616. doi: 10.7498/aps.55.6612
    [18] 王 岩, 韩晓艳, 任慧志, 侯国付, 郭群超, 朱 锋, 张德坤, 孙 建, 薛俊明, 赵 颖, 耿新华. 相变域硅薄膜材料的光稳定性.  , 2006, 55(2): 947-951. doi: 10.7498/aps.55.947
    [19] 张 凯, 冯 俊. 相对论Birkhoff系统的对称性与稳定性.  , 2005, 54(7): 2985-2989. doi: 10.7498/aps.54.2985
    [20] 欧阳世根, 江德生, 佘卫龙. 复色光伏孤子的稳定性.  , 2004, 53(9): 3033-3041. doi: 10.7498/aps.53.3033
计量
  • 文章访问数:  6291
  • PDF下载量:  310
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-08
  • 修回日期:  2015-08-21
  • 刊出日期:  2016-01-05

/

返回文章
返回
Baidu
map