搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

悬链曲面上的点粒子动力学及扩展空间约束系统量子化

寻大毛 欧阳涛 谈荣日 刘慧宣

引用本文:
Citation:

悬链曲面上的点粒子动力学及扩展空间约束系统量子化

寻大毛, 欧阳涛, 谈荣日, 刘慧宣

Dynamics of the particle on a catenoid and the quantization of the constrained system in the extended space

Xun Da-Mao, Ouyang Tao, Tan Rong-Ri, Liu Hui-Xuan
PDF
导出引用
  • 扩张型正则量子化方案的核心内容是位置、动量以及哈密顿量同时量子化. 通过分析悬链面上粒子的扩张型正则量子化方案, 并且与薛定谔理论进行比较, 发现内禀几何中二维悬链面给不出与薛定谔理论相一致的结果, 而考虑将二维悬链面嵌入在三维欧氏空间之后, 还需要将正则量子化方案进行扩张, 可以得到体系的几何势能和几何动量, 并与薛定谔理论相一致.
    There are two approaches to investigating the quantum mechanics for a particle constrained on a curved hypersurface, namely the Schrödinger formalism and the Dirac theory.#br#The Schrödinger formalism utilizes the confining potential technique to lead to a unique form of geometric kinetic energy T that contains the geometric potential VS and the geometric momentum p,#br#T=-ħ2/(2m)▽2+VS=-ħ2/(2m)[▽2+(M2-K)],p=-iħ(▽2+Mn),#br#where ▽2 is the gradient operator on the two-dimensional surface. Both the kinetic energy and momentum are geometric invariants. The geometric potential has been experimentally confirmed in two systems.#br#The Dirac's canonical quantization procedure assumes that the fundamental quantum conditions involve only the canonical position x and momentum p, which are in general given by#br#[xi,xj]=iħÂij,[pi,pj]=iħΩij,[xi,pj]=iħΘij#br#where Âij, Ωij, and Θijare all antisymmetric tensors. It does not always produce a unique form of momentum or Hamiltonian after quantization. An evident step is to further introduce more commutation relations than the fundamental ones, and what we are going to do is to add those between Hamiltonian and positions x, and between Hamiltonian and momenta p, i.e.,#br#[x,Ĥ]=iħÔ({x,HC}c) and [p,Ĥ]=iħÔ({p,HC}c)#br#where {f,g}c denotes the Poisson or Dirac bracket in classical mechanics, and Ô({f,g}c) means a construction of operator based on the resulting {f,g}c, and in general we have [f,ĝ]≠Ô({f,g}c). The association between these two sets of relations means that the operators {x,p,H must be simultaneously quantized. This is the basic framework of the so-called enlarged canonical quantization scheme.#br#For particles constrained on the minimum surface, momentum and kinetic energy are assumed to be dependent on purely intrinsic geometric quantity. Whether the intrinsic geometry offers a proper framework for the canonical quantization scheme is then an interesting issue. In the present paper, we take the catenoid to find whether the quantum theory can be established satisfactorily. Results show that the theory is not self-consistent. In contrast, in the threedimensional Euclidean space, the geometric momentum and geometric potential are then in agreement with those given by the Schrödinger theory.
      通信作者: 寻大毛, damao65@163.com
    • 基金项目: 国家自然科学基金(批准号: 11447209)、国家自然科学基金青年科学基金(批准号: 61404062)、 国家自然科学基金地区科学基金(批准号: 11564015)和江西科技师范大学博士启动基金(批准号: 3000990106)资助的课题.
      Corresponding author: Xun Da-Mao, damao65@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11447209), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61404062), the Fund for Less Developed Regions of the National Natural Science Foundation of China (Grant No. 11564015), and the Doctoral Fund of Jiangxi Science and Technology Normal University, China (Grant No. 3000990106).
    [1]

    Jensen H, Koppe H 1971 Ann. Phys. (N.Y.) 63 586

    [2]

    da Costa R C T 1981 Phys. Rev. A 23 1982

    [3]

    Ferrari G, Cuoghi G 2008 Phys. Rev. Lett. 100 230403

    [4]

    Liu Q H 2013 J. Phys. Soc. Jpn. 82 104002

    [5]

    Liu Q H, Tong C L, Lai M M 2007 J. Phys.: Math. Theor. 40 4161

    [6]

    Liu Q H, Tang L H, Xun D M 2011 Phys. Rev. A 84 042101

    [7]

    Liu Q H 2014 Phys. Lett. A 378 785

    [8]

    Dirac P A M 1950 Can. J. Math. 2 129

    [9]

    Dirac P A M 1964 Lectures on Quantum Mechanics (New York: Yeshiva University) p40

    [10]

    Dirac P A M 1967 The Principles of Quantum Mechanics (Vol. 4) (Oxford: Oxford University Press) p114

    [11]

    Kleinert H, Shabanov S V 1997 Phys. Lett. A 232 327

    [12]

    Liu Q H 2013 J. Math. Phys. 54 122113

    [13]

    Dirac P A M 1925 Proc. R. Soc. London Ser. A 109 642

    [14]

    Szameit A, Dreisow F, Heinrich M, Keil R, Nolte S, Tnnermann A, Longhi S 2010 Phys. Rev. Lett. 104 150403

    [15]

    Onoe J, Ito T, Shima H, Yoshioka H, Kimura S 2012 Epl-Europhys. Lett. 98 27001

    [16]

    Xun D M, Liu Q H 2014 Ann. Phys. (N.Y.) 341 132

    [17]

    Xun D M, Liu Q H 2013 Int. J. Geom. Methods M. 10 1220031

    [18]

    Zhang Z S, Xiao S F, Xun D M, Liu Q H 2015 Commun. Theor. Phys. 63 19

    [19]

    Xun D M, Liu Q H, Zhu X M 2013 Ann. Phys. (N.Y.) 338 123

    [20]

    Chen W H 1999 The Elementary Differential Geometry(Beijing: Beijing University Press) pp121-123 (in Chinese) [陈维桓 1999 微分几何初步 (北京: 北京大学出版社) 第121–123页]

    [21]

    Miao Y G 1993 Acta Phys. Sin. 42 536 (in Chinese) [缪炎刚 1993 42 536]

    [22]

    Miao Y G, Liu Y Y 1993 Chin. Phys. Lett. 10 5

  • [1]

    Jensen H, Koppe H 1971 Ann. Phys. (N.Y.) 63 586

    [2]

    da Costa R C T 1981 Phys. Rev. A 23 1982

    [3]

    Ferrari G, Cuoghi G 2008 Phys. Rev. Lett. 100 230403

    [4]

    Liu Q H 2013 J. Phys. Soc. Jpn. 82 104002

    [5]

    Liu Q H, Tong C L, Lai M M 2007 J. Phys.: Math. Theor. 40 4161

    [6]

    Liu Q H, Tang L H, Xun D M 2011 Phys. Rev. A 84 042101

    [7]

    Liu Q H 2014 Phys. Lett. A 378 785

    [8]

    Dirac P A M 1950 Can. J. Math. 2 129

    [9]

    Dirac P A M 1964 Lectures on Quantum Mechanics (New York: Yeshiva University) p40

    [10]

    Dirac P A M 1967 The Principles of Quantum Mechanics (Vol. 4) (Oxford: Oxford University Press) p114

    [11]

    Kleinert H, Shabanov S V 1997 Phys. Lett. A 232 327

    [12]

    Liu Q H 2013 J. Math. Phys. 54 122113

    [13]

    Dirac P A M 1925 Proc. R. Soc. London Ser. A 109 642

    [14]

    Szameit A, Dreisow F, Heinrich M, Keil R, Nolte S, Tnnermann A, Longhi S 2010 Phys. Rev. Lett. 104 150403

    [15]

    Onoe J, Ito T, Shima H, Yoshioka H, Kimura S 2012 Epl-Europhys. Lett. 98 27001

    [16]

    Xun D M, Liu Q H 2014 Ann. Phys. (N.Y.) 341 132

    [17]

    Xun D M, Liu Q H 2013 Int. J. Geom. Methods M. 10 1220031

    [18]

    Zhang Z S, Xiao S F, Xun D M, Liu Q H 2015 Commun. Theor. Phys. 63 19

    [19]

    Xun D M, Liu Q H, Zhu X M 2013 Ann. Phys. (N.Y.) 338 123

    [20]

    Chen W H 1999 The Elementary Differential Geometry(Beijing: Beijing University Press) pp121-123 (in Chinese) [陈维桓 1999 微分几何初步 (北京: 北京大学出版社) 第121–123页]

    [21]

    Miao Y G 1993 Acta Phys. Sin. 42 536 (in Chinese) [缪炎刚 1993 42 536]

    [22]

    Miao Y G, Liu Y Y 1993 Chin. Phys. Lett. 10 5

  • [1] 刘全慧, 张梦男, 肖世发, 寻大毛. 三维各向同性谐振子的几何动量分布.  , 2019, 68(1): 010301. doi: 10.7498/aps.68.20181634
    [2] 程景, 单传家, 刘继兵, 黄燕霞, 刘堂昆. Tavis-Cummings模型中的几何量子失协特性.  , 2018, 67(11): 110301. doi: 10.7498/aps.67.20172699
    [3] 吴仍来, 肖世发, 薛红杰, 全军. 二维方形量子点体系等离激元的量子化.  , 2017, 66(22): 227301. doi: 10.7498/aps.66.227301
    [4] 饶黄云, 刘义保, 江燕燕, 郭立平, 王资生. 三能级混合态的量子几何相位.  , 2012, 61(2): 020302. doi: 10.7498/aps.61.020302
    [5] 李尊懋, 熊庄, 代丽丽. 几何活性原子态的计算.  , 2010, 59(11): 7824-7829. doi: 10.7498/aps.59.7824
    [6] 郑映鸿, 陈 童, 王 平, 常 哲. 几何相位的伽利略变换性质.  , 2007, 56(11): 6199-6203. doi: 10.7498/aps.56.6199
    [7] 杨 欢, 高 矿, 张穗萌. 大能量损失小动量转移几何条件下氦原子(e, 2e)反应的理论研究.  , 2007, 56(9): 5202-5208. doi: 10.7498/aps.56.5202
    [8] 谢月新, 李志坚, 周光辉. 介观耗散电容耦合电路量子化中的正则变换.  , 2007, 56(12): 7224-7229. doi: 10.7498/aps.56.7224
    [9] 娄太平. 具有广义协变的包含重力场贡献的重力场方程.  , 2006, 55(4): 1602-1606. doi: 10.7498/aps.55.1602
    [10] 李华钟. 关于Lewis-Riesenfeld相位和量子几何相位.  , 2004, 53(6): 1643-1646. doi: 10.7498/aps.53.1643
    [11] 宋同强. 耗散介观电容耦合电路的量子化.  , 2004, 53(5): 1352-1356. doi: 10.7498/aps.53.1352
    [12] 强稳朝. 自引力旋转球的整体变形几何.  , 2001, 50(9): 1643-1647. doi: 10.7498/aps.50.1643
    [13] 沈汉鑫, 朱梓忠, 黄美纯. NiAl的几何与电子结构.  , 2001, 50(1): 95-98. doi: 10.7498/aps.50.95
    [14] 李新洲, 袁宁一, 刘道军, 郝建纲. 广义Schwarzschild几何的引力微扰.  , 2000, 49(6): 1031-1034. doi: 10.7498/aps.49.1031
    [15] 石名俊, 杜江峰, 朱栋培, 阮图南. 混合纠缠态的几何描述.  , 2000, 49(10): 1912-1918. doi: 10.7498/aps.49.1912
    [16] 强稳朝. Kerr-NUT黑洞的表面几何.  , 1992, 41(7): 1045-1056. doi: 10.7498/aps.41.1045
    [17] 强稳朝. 两个Schwarzschild黑洞的表面几何.  , 1992, 41(12): 1913-1918. doi: 10.7498/aps.41.1913
    [18] 陈岩松, 郑师海, 李德华. 二维光学几何矩变换.  , 1991, 40(10): 1601-1606. doi: 10.7498/aps.40.1601
    [19] 杨奇斌, 叶恒强. 点阵平面几何学.  , 1980, 29(8): 1033-1038. doi: 10.7498/aps.29.1033
    [20] 盛谏. 永磁材料退磁曲线的几何作图法.  , 1978, 27(3): 331-338. doi: 10.7498/aps.27.331
计量
  • 文章访问数:  5707
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-20
  • 修回日期:  2015-09-18
  • 刊出日期:  2015-12-05

/

返回文章
返回
Baidu
map