搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

点堆中子动力学方程组曲率权重法的解

李明芮 黎浩峰 陈文振 郝建立

引用本文:
Citation:

点堆中子动力学方程组曲率权重法的解

李明芮, 黎浩峰, 陈文振, 郝建立

Curvature weight method of solving the point reactor neutron kinetic equations

Li Ming-Rui, Li Hao-Feng, Chen Wen-Zhen, Hao Jian-Li
PDF
导出引用
  • 针对核反应堆安全工程对某些数值计算结果要求较高的精度和正的误差, 以及舰船核反应堆机动性对计算速度的要求, 需要从数学上寻找一种新的数值计算方法, 以满足实际曲线向上凸或向下凹时计算值总是略高于真实值, 且误差不大于欧拉法和改进的欧拉法所得值. 本文研究曲率权重法求解点堆中子动力学方程组, 该方法是在曲率圆法的基础上引入权重的思想来衡量间隔步长上两个曲率对该步长曲率平均值的贡献. 与欧拉法和改进的欧拉法比较, 曲率权重法的计算结果总是能够高于真实值或有正的误差, 且精度和计算速度得到明显提升. 将该方法用于次临界堆阶跃和线性引入反应性时中子密度的求解, 能够快速得到满足计算要求和高精度的数值结果.
    The point kinetic equations are the system of a couple stiff ordinary differential equations. Many studies have focused on the development of more advanced and efficient methods of solving the equations, such as the high order Taylor polynomials method, the Haar wavelet operational method, the fractional point-neutron kinetic model method, the basis function method, the homotopy analysis method, and other methods. Most of these methods are successful in some specific problems, but still have, more or less, disadvantages. For example, the accuracy of the Haar wavelet operational method is limited by the collocation points, and it needs more computing time for a high precision. Aiming at the requirements that some numerical calculation results must have the higher precision and only the positive error in the nuclear reactor safety engineering and ship reactor for the maneuverability, in this paper we try to look for a new numerical method to satisfy that the calculation value is slightly higher than the real value when the actual curve is upward convex or downward concave, and the error is not greater than that by the Euler and improved Euler method. The new method is so-called the curvature weight (CW) method, which is based on the curvature circle method and considers the contributions of two curvatures at the interval step point to the average curvature inside the interval step. Using the decoupling method to remove the stiffness of equations and the instantaneous jump approximation to derive the neutron differential equations, the first and second derivative of neutron density are obtained. Then the CW method is used to solve the point reactor neutron kinetic equations, and thus obtaining the numerical solution. Compared with the results by the Euler and improved Euler method, the numerical calculation results by the CW method are always higher than the real value, and the calculation accuracy and speed are improved significantly. When this new method is used to solve the point reactor neutron differential equations with the step and linear reactivity inserted into the subcritical reactor, the numerical results which satisfy the requirements of positive calculation error and high precision can be obtained quickly. After improving the calculation step length, the precision reduction by the CW method is significantly lower than that by the Euler and improved Euler method. So the CW method can greatly shorten the total computing time, and it is also effective for most of differential equation systems.
      通信作者: 陈文振, cwz2@21cn.com
    • 基金项目: 国家自然科学基金(批准号: 11301540)资助的课题.
      Corresponding author: Chen Wen-Zhen, cwz2@21cn.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11301540).
    [1]

    L Z Q, Zhang L M, Wang Y S 2014 Chin. Phys. B 23 120203

    [2]

    Huang Z Q 2007 Kinetics Base of Nuclear Reactor (Beijing: Peaking University Press) p174 (in Chinese) [黄祖洽 2007 核反应堆动力学基础 (北京: 北京大学出版社) 第174页]

    [3]

    Zhu Q, Shang X L, Chen W Z 2012 Acta Phys. Sin. 61 070201 (in Chinese) [朱倩, 商学利, 陈文振 2012 61 070201]

    [4]

    Cai Z S, Cai Z M, Chen L S 2001 Nucl. Power Engng. 22 390 (in Chinese) [蔡章生, 蔡志明, 陈力生 2001 核动力工程 22 390]

    [5]

    Cai Z S 2005 Nuclear Power Reactor Neutron Dynamics (Bejing: National Industry Press) pp171-177 (in Chinese) [蔡章生 2005 核动力反应堆中子动力学 (北京: 国防工业出版社) 第171177页]

    [6]

    Li H F, Chen W Z, Zhu Q, Luo L 2008 Atom. Energy Sci. Technol. 42(sl) 162 (in Chinese) [黎浩峰, 陈文振, 朱倩, 罗磊 2008 原子能科学技术 42(sl) 162]

    [7]

    Vyawahare V A, Nataraj P S V 2013 Commun. Nonlinear Sci. Numer. Simulat. 18 1840

    [8]

    Nowak T K, Duzinkiewica K, Riotrowski P 2014 Ann. Nucl. Energ. 73 317

    [9]

    Chakraverty S, Tapaswini S 2014 Chin. Phys. B 23 120202

    [10]

    Ray S S, Patra A 2013 Ann. Nucl. Energ. 54 154

    [11]

    Patra A, Ray S S 2014 Ann. Nucl. Energ. 68 112

    [12]

    Patra A, Ray S S 2014 Ann. Nucl. Energ. 73 408

    [13]

    Chen W Z, Xiao H G, Li H F, Chen L 2015 Ann. Nucl. Energ. 75 353

    [14]

    Tasic B, Mattheij R M 2004 Appl. Math. Comput. 156 633

    [15]

    Butcher J C 2000 J. Comput. Appl. Math. 125 1

    [16]

    Wu X Y 1998 Comput. Math. Appl. 35 59

    [17]

    Wu X, Xia J 2000 Comput. Math. Appl. 39 247

    [18]

    Snchez J 1989 Nucl. Sci. Eng. 103 94

    [19]

    Zhang F, Chen W Z, Gui X W 2008 Ann. Nucl. Energ. 35 746

    [20]

    Li H F, Chen W Z, Luo L, Zhu Q 2009 Ann. Nucl. Energ. 36 427

    [21]

    Li H F, Chen W Z, Zhang F, Chen Z Y 2010 Prog. Nucl. Energ. 52 321

    [22]

    Li H F, Chen W Z, Zhang F, Shang X L 2010 Acta Phys. Sin. 59 2375 (in Chinese) [黎浩峰, 陈文振, 张帆, 商学利 2010 59 2375]

  • [1]

    L Z Q, Zhang L M, Wang Y S 2014 Chin. Phys. B 23 120203

    [2]

    Huang Z Q 2007 Kinetics Base of Nuclear Reactor (Beijing: Peaking University Press) p174 (in Chinese) [黄祖洽 2007 核反应堆动力学基础 (北京: 北京大学出版社) 第174页]

    [3]

    Zhu Q, Shang X L, Chen W Z 2012 Acta Phys. Sin. 61 070201 (in Chinese) [朱倩, 商学利, 陈文振 2012 61 070201]

    [4]

    Cai Z S, Cai Z M, Chen L S 2001 Nucl. Power Engng. 22 390 (in Chinese) [蔡章生, 蔡志明, 陈力生 2001 核动力工程 22 390]

    [5]

    Cai Z S 2005 Nuclear Power Reactor Neutron Dynamics (Bejing: National Industry Press) pp171-177 (in Chinese) [蔡章生 2005 核动力反应堆中子动力学 (北京: 国防工业出版社) 第171177页]

    [6]

    Li H F, Chen W Z, Zhu Q, Luo L 2008 Atom. Energy Sci. Technol. 42(sl) 162 (in Chinese) [黎浩峰, 陈文振, 朱倩, 罗磊 2008 原子能科学技术 42(sl) 162]

    [7]

    Vyawahare V A, Nataraj P S V 2013 Commun. Nonlinear Sci. Numer. Simulat. 18 1840

    [8]

    Nowak T K, Duzinkiewica K, Riotrowski P 2014 Ann. Nucl. Energ. 73 317

    [9]

    Chakraverty S, Tapaswini S 2014 Chin. Phys. B 23 120202

    [10]

    Ray S S, Patra A 2013 Ann. Nucl. Energ. 54 154

    [11]

    Patra A, Ray S S 2014 Ann. Nucl. Energ. 68 112

    [12]

    Patra A, Ray S S 2014 Ann. Nucl. Energ. 73 408

    [13]

    Chen W Z, Xiao H G, Li H F, Chen L 2015 Ann. Nucl. Energ. 75 353

    [14]

    Tasic B, Mattheij R M 2004 Appl. Math. Comput. 156 633

    [15]

    Butcher J C 2000 J. Comput. Appl. Math. 125 1

    [16]

    Wu X Y 1998 Comput. Math. Appl. 35 59

    [17]

    Wu X, Xia J 2000 Comput. Math. Appl. 39 247

    [18]

    Snchez J 1989 Nucl. Sci. Eng. 103 94

    [19]

    Zhang F, Chen W Z, Gui X W 2008 Ann. Nucl. Energ. 35 746

    [20]

    Li H F, Chen W Z, Luo L, Zhu Q 2009 Ann. Nucl. Energ. 36 427

    [21]

    Li H F, Chen W Z, Zhang F, Chen Z Y 2010 Prog. Nucl. Energ. 52 321

    [22]

    Li H F, Chen W Z, Zhang F, Shang X L 2010 Acta Phys. Sin. 59 2375 (in Chinese) [黎浩峰, 陈文振, 张帆, 商学利 2010 59 2375]

  • [1] 洪浩艺, 高美琪, 桂龙成, 华俊, 梁剑, 史君, 邹锦涛. 格点量子色动力学数据的虚部分布与信号改进.  , 2023, 72(20): 201101. doi: 10.7498/aps.72.20230869
    [2] 李斌, 张国峰, 陈瑞云, 秦成兵, 胡建勇, 肖连团, 贾锁堂. 单量子点光谱与激子动力学研究进展.  , 2022, 71(6): 067802. doi: 10.7498/aps.71.20212050
    [3] 高辉, 宋凌莉, 李兵. 墙壁反射中子对脉冲堆波形的影响.  , 2018, 67(17): 172801. doi: 10.7498/aps.67.20180085
    [4] 杜超凡, 章定国. 基于无网格点插值法的旋转悬臂梁的动力学分析.  , 2015, 64(3): 034501. doi: 10.7498/aps.64.034501
    [5] 上官丹骅, 李刚, 邓力, 张宝印, 李瑞, 付元光. 反应堆蒙特卡罗临界模拟中均匀裂变源算法的改进.  , 2015, 64(5): 052801. doi: 10.7498/aps.64.052801
    [6] 邓琪敏, 邹亚中, 包景东. 耦合系统的朗之万动力学产生法.  , 2014, 63(17): 170502. doi: 10.7498/aps.63.170502
    [7] 潘北诚, 史庆藩, 孙刚. 颗粒堆准静态崩塌及慢速流动过程中的堆结构研究.  , 2014, 63(1): 014703. doi: 10.7498/aps.63.014703
    [8] 赵啦啦, 赵跃民, 刘初升, 李珺. 湿颗粒堆力学特性的离散元法模拟研究.  , 2014, 63(3): 034501. doi: 10.7498/aps.63.034501
    [9] 戴存礼, 吴威, 赵艳艳, 姚雪霞, 赵志刚. 权重分布对加权局域世界网络动力学同步的影响.  , 2013, 62(10): 108903. doi: 10.7498/aps.62.108903
    [10] 李霞, 冯东海, 何红燕, 贾天卿, 单璐繁, 孙真荣, 徐至展. CdTe/CdS核壳结构量子点超快载流子动力学.  , 2012, 61(19): 197801. doi: 10.7498/aps.61.197801
    [11] 陈国云, 辛勇, 黄福成, 魏志勇, 雷升杰, 黄三玻, 朱立, 赵经武, 马加一. 用于反应堆中子/ 射线混合场测量的涂硼电离室性能.  , 2012, 61(8): 082901. doi: 10.7498/aps.61.082901
    [12] 刘华敏, 范永胜, 田时海, 周维, 陈旭. 分子动力学模拟压水反应堆中氢气对水的影响.  , 2012, 61(6): 062801. doi: 10.7498/aps.61.062801
    [13] 朱倩, 商学利, 陈文振. 六组点堆中子动力学方程组的同伦分析解.  , 2012, 61(7): 070201. doi: 10.7498/aps.61.070201
    [14] 范永胜, 陈旭, 周维, 史顺平, 李勇. 分子动力学模拟压水反应堆中联氨对水的影响.  , 2011, 60(3): 032802. doi: 10.7498/aps.60.032802
    [15] 黎浩峰, 陈文振, 张帆, 商学利. 有温度反馈阶跃引入负反应性瞬变的解.  , 2010, 59(4): 2375-2380. doi: 10.7498/aps.59.2375
    [16] 宋三元, 郭光华, 张光富, 宋文斌. 矩形磁性纳米点动力学反磁化过程的微磁学研究.  , 2009, 58(8): 5757-5762. doi: 10.7498/aps.58.5757
    [17] 赵永志, 江茂强, 徐平, 郑津洋. 颗粒堆内微观力学结构的离散元模拟研究.  , 2009, 58(3): 1819-1825. doi: 10.7498/aps.58.1819
    [18] 陈文振, 朱 波, 黎浩峰. 小阶跃反应性输入时点堆中子动力学方程的解析解.  , 2004, 53(8): 2486-2489. doi: 10.7498/aps.53.2486
    [19] 谢晓明, 蒋亦民, 王焕友, 曹晓平, 刘 佑. 颗粒堆密度变化对堆底压力分布的影响.  , 2003, 52(9): 2194-2199. doi: 10.7498/aps.52.2194
    [20] 雷家荣, 袁永刚, 赵 林, 赵敏智, 崔高显. 快中子堆n,γ混合场中γ光子注量的测量研究.  , 2003, 52(1): 53-57. doi: 10.7498/aps.52.53
计量
  • 文章访问数:  6297
  • PDF下载量:  251
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-26
  • 修回日期:  2015-07-10
  • 刊出日期:  2015-11-05

/

返回文章
返回
Baidu
map