搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用磁致发光曲线研究Rubrene器件中激子分裂和湮没过程

陈秋松 袁德 贾伟尧 陈历相 邹越 向杰 陈颖冰 张巧明 熊祖洪

引用本文:
Citation:

利用磁致发光曲线研究Rubrene器件中激子分裂和湮没过程

陈秋松, 袁德, 贾伟尧, 陈历相, 邹越, 向杰, 陈颖冰, 张巧明, 熊祖洪

Investigation of excitons fission and annihilation processes in Rubrene based devices by utilizing magneto-electroluminescence curves

Chen Qiu-Song, Yuan De, Jia Wei-Yao, Chen Li-Xiang, Zou Yue, Xiang Jie, Chen Ying-Bing, Zhang Qiao-Ming, Xiong Zu-Hong
PDF
导出引用
  • 为了研究Rubrene分子中激发态的能量共振和分子间π-π共轭的特性对有机磁效应的影响, 本文制备了基于不同浓度和厚度的Rubrene有机发光器件, 并在不同温度下测量了器件的电致发光磁效应(magneto-electroluminescence, MEL). 实验发现, 发光层中Rubrene的厚度和浓度均可以对器件中的MEL产生较大的影响, 室温下MEL的高场值随Rubrene层厚度的增加而增加, 并在30 nm之后逐步趋于饱和; 随着Rubrene分子的浓度和测量温度的降低, MEL高场增加的幅度逐渐减小, 甚至在低温时出现高场下降. 通过对实验曲线进行数值拟合, 认为Rubrene分子之间形成的π-π共轭结构有助于双分子相互作用的发生, 单重态激子分裂、三重态激子之间的湮没和单-三重态极化子对的系间窜越三种过程在器件中相互竞争导致了所得MEL的变化. 本工作有助于加深对有机光电子器件内部机理的认识.
    That the energy of triplet exciton in Rubrene is about half of its singlet leads to energy resonance. This resonance not only allows two triplets to annihilate into a singlet, but also makes a singlet probably fission into two triplets in different molecules. On the other hand, the π-π conjugation of two Rubrene molecules could be formed during molecules stacking, and this spatial relationship will affect the charge transport property enormously. In this article, we use organic magnetic-field effect as a convenient approach to explore the influence of the energy resonant excited states in the Rubrene molecules and the π-π conjugation between the different molecules on the luminescence property of Rubrene. Firstly, we fabricate organic light emitting diodes based on pure Rubrene and modulate the thickness of Rubrene. Experimental measurements of these devices at room temperature exhibit that the thickness can affect the devices' magneto-electroluminescence (MEL) curves substantially. Values of high-field MEL increase with the thickness of Rubrene and gradually saturate after reaching 30 nm. This can be attributed to the fact that the ratio of π-π conjugation in Rubrene molecules to the stacking will grow with increasing thickness, and then saturate at a proper thickness. Subsequently, we modulate the concentration of Rubrene by doping Buthocuproine (BCP) in the active layer. Experimental results at room temperature show that the values of high-field MEL decrease as the concentration of Rubrene decreases. These results verify that the influence of π-π conjugation is not only on the MEL curves, but also on the singlet fission. Furthermore, all the MEL curves exhibit a high-field decay at low temperatures since the endothermic fission process in the Rubrene molecules becomes weaker as the temperature decreases, and the longer triplet lifetime at lower temperatures also enhances the process of triplet annihilation. Besides, the extensively existent intersystem crossing between singlet and triplet polaron pairs may affect these devices as well. Finally, the MEL curves of 20% Rubrene device at room temperature changing with various currents are successfully fitted through the combination of two exponential functions and a Lorentzian function. By means of the fitting, we confirm that the singlet exciton fission, the triplet-triplet exciton annihilation, and the intersystem crossing between singlet and triplet polarons coexist in the devices. Therefore, the varieties of these MEL curves can be attributed to the competition of these processes. The fittings reveal that the triplet-triplet exciton annihilation rate increases more obviously than the singlet exciton fission rate with increasing current. Compared with the rates of the two bimolecular interactions given before, the change of the intersystem crossing rate could be neglected because of its small magnitude. This work is helpful to expand the understanding of the internal mechanism of organic optoelectronic devices.
      通信作者: 熊祖洪, zhxiong@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11374242, 11404266)和重庆市科委自然科学基金(编号: CSTC, 2010BA6002)资助的课题.
      Corresponding author: Xiong Zu-Hong, zhxiong@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374242, 11404266), and the Natural Science Foundation of CQ CSTC, China (Grant No. CSTC, 2010BA6002).
    [1]

    Yost S R, Lee J, Wilson M W B, Wu T, McMahon D P, Parkhurst R R, Thompson N J, Congreve D N, Rao A, Johnson K, Sfeir M Y, Bawendi M G, Swager T M, Friend R H, Baldo M A, Van Voorhis T 2014 Nat. Chem. 6 492

    [2]

    Higgins R W T, Monkman A P, Nothofer H G, Scherf U 2001 Appl. Phys. Lett. 79 857

    [3]

    Ma L, Zhang K, Kloc C, Sun H, Michel-Beyerle M E, Gurzadyan G G 2012 Phys. Chem. Chem. Phys. 14 8307

    [4]

    Park S W, Jeong S H, Choi J M, Hwang J M, Kim J H, Seongil Im 2007 Appl. Phys. Lett. 91 033506

    [5]

    Hsu C H, Deng J, Staddon C R, Beton P H 2007 Appl. Phys. Lett. 91 193505

    [6]

    Zhou J L, Yu J S, Yu X G, Cai X Y 2012 Chin. Phys. B 21 027305

    [7]

    Michio Matsumura, Takumi Furukawa 2002 Jpn. J. Appl. Phys. 41 2742

    [8]

    Pandey A K, Nunzi J M 2007 Adv. Mater. 19 3613

    [9]

    Yong Qiu, Yudi Gao, Liduo Wang, Peng Wei, Lian Duan, Deqiang Zhang, Guifang Dong 2002 Appl. Phys. Lett. 81 3540

    [10]

    Zhang Z L, Jiang X Y, Xu S H, Nagatomo T, Omoto O 1998 J. Phys. D: Appl. Phys. 31 32

    [11]

    Huang H H, Chu S Y, Kao P C, Chen Y C 2008 Thin Solid Films 516 5669

    [12]

    Zang Y, Yu J S, Wang N N, Jiang Y D 2011 Chin. Phys. B 20 017202

    [13]

    Zhang Y, Liu R, Lei Y L, Chen P, Zhang Q M, Xiong Z H 2010 Acta Phys. Sin. 59 5817 (in Chinese) [张勇, 刘荣, 雷衍连, 陈平, 张巧明, 熊祖洪 2010 59 5817]

    [14]

    Johnson R C, Merrifield R, Avakian P, Flippen R 1967 Phys. Rev. Lett. 19 285

    [15]

    Mezyk J, Tubino R, Monguzzi A, Mech A, Meinardi F 2009 Phys. Rev. Lett. 102 087404

    [16]

    Smith M B, Michl J 2010 Chem. Rev. 110 6891

    [17]

    Johnson R C, Merrifield R E 1970 Phys. Rev. B 1 896

    [18]

    Bouchriha H, Ern V, Fave J L, Guthmann C, Schott M 1978 J. Phys. France 39 257

    [19]

    Jadhav P J, Brown P R, Thompson N, Wunsch B, Mohanty A, Yost S R, Hontz E, Van Voorhis T, Bawendi M G, Bulovic V, Baldo M A 2012 Adv. Mater. 246169

    [20]

    Ni G, Nguyen T D, Vardeny Z V 2011 Appl. Phys. Lett. 98 263302

    [21]

    Qiming Peng, Weijun Li, Shitong Zhang, Ping Chen, Feng Li, Yuguang Ma 2013 Adv. Opt. Mater. 1 362

    [22]

    Piland G B, Burdett J J, Dharmalingam Kurunthu, Bardeen C J 2013 J. Phys. Chem. C 117 1224

    [23]

    Tarasov V V, Zoriniants G E, Shushin A I, Triebel M M 1997 Chem. Phys. Lett. 267 58

    [24]

    Zhao J Q, Ding M, Zhang T Y, Zhang N Y, Pang Y T, Ji Y J, Chen Y, Wang F X, Fu G 2012 Chin. Phys. B 21 057110

    [25]

    Geacintov N, Pope M, Vogel F 1969 Phys. Rev. Lett. 22 593

    [26]

    Kihyun Kim, Min Ki Kim, Han Saem Kang, Mi Yeon Cho, Jinsoo Joo, Ju Hee Kim, Kyung Hwan Kim, Chang Seop Hong, Dong Hoon Choi 2007 Synth. Met. 157 481

    [27]

    Demétrio A da Silva Filho, Kim E G, Brédas J L 2005 Adv. Mater. 17 1072

    [28]

    Takeya J, Nishikawa T, Takenobu T, Kobayashi S, Iwasa Y, Mitani T, Goldmann C, Krellner C, Batlogg B 2004 Appl. Phys. Lett. 85 5078

    [29]

    Congyun Zhang, Chuan Du, Hui Yan, Shiling Yuan, Lifeng Chi 2013 RSC Adv. 3 15404

    [30]

    Thorsten Vehoff, Bj\"orn Baumeier, Alessandro Troisi, Denis Andrienko 2010 J. Am. Chem. Soc. 132 11702

    [31]

    Chan M Y, Lai S L, Wong F L, Lengyel O, Lee C S, Lee S T 2003 Chem. Phys. Lett. 371 700

    [32]

    Zhang Y, Liu R, Lei Y L, Xiong Z H 2009 Appl. Phys. Lett. 94 083307

    [33]

    Congyun Zhang, Zhen Xu, Hui Yan, Fengfeng Gao, Shiling Yuan 2013 Chem. Phys. Lett. 571 38

    [34]

    Chen P, Lei Y L, Song Q L, Zhang Y, Liu R, Zhang Q M, Xiong Z H 2009 Appl. Phys. Lett. 95 213304

    [35]

    Yichun Luo, Hany Aziz, Richard Klenkler, Gu Xu, Zoran D Popovic 2008 Chem. Phys. Lett. 458 319

    [36]

    Jiang J, Pearson J, Bader S 2008 Phys. Rev. B 77 035303

  • [1]

    Yost S R, Lee J, Wilson M W B, Wu T, McMahon D P, Parkhurst R R, Thompson N J, Congreve D N, Rao A, Johnson K, Sfeir M Y, Bawendi M G, Swager T M, Friend R H, Baldo M A, Van Voorhis T 2014 Nat. Chem. 6 492

    [2]

    Higgins R W T, Monkman A P, Nothofer H G, Scherf U 2001 Appl. Phys. Lett. 79 857

    [3]

    Ma L, Zhang K, Kloc C, Sun H, Michel-Beyerle M E, Gurzadyan G G 2012 Phys. Chem. Chem. Phys. 14 8307

    [4]

    Park S W, Jeong S H, Choi J M, Hwang J M, Kim J H, Seongil Im 2007 Appl. Phys. Lett. 91 033506

    [5]

    Hsu C H, Deng J, Staddon C R, Beton P H 2007 Appl. Phys. Lett. 91 193505

    [6]

    Zhou J L, Yu J S, Yu X G, Cai X Y 2012 Chin. Phys. B 21 027305

    [7]

    Michio Matsumura, Takumi Furukawa 2002 Jpn. J. Appl. Phys. 41 2742

    [8]

    Pandey A K, Nunzi J M 2007 Adv. Mater. 19 3613

    [9]

    Yong Qiu, Yudi Gao, Liduo Wang, Peng Wei, Lian Duan, Deqiang Zhang, Guifang Dong 2002 Appl. Phys. Lett. 81 3540

    [10]

    Zhang Z L, Jiang X Y, Xu S H, Nagatomo T, Omoto O 1998 J. Phys. D: Appl. Phys. 31 32

    [11]

    Huang H H, Chu S Y, Kao P C, Chen Y C 2008 Thin Solid Films 516 5669

    [12]

    Zang Y, Yu J S, Wang N N, Jiang Y D 2011 Chin. Phys. B 20 017202

    [13]

    Zhang Y, Liu R, Lei Y L, Chen P, Zhang Q M, Xiong Z H 2010 Acta Phys. Sin. 59 5817 (in Chinese) [张勇, 刘荣, 雷衍连, 陈平, 张巧明, 熊祖洪 2010 59 5817]

    [14]

    Johnson R C, Merrifield R, Avakian P, Flippen R 1967 Phys. Rev. Lett. 19 285

    [15]

    Mezyk J, Tubino R, Monguzzi A, Mech A, Meinardi F 2009 Phys. Rev. Lett. 102 087404

    [16]

    Smith M B, Michl J 2010 Chem. Rev. 110 6891

    [17]

    Johnson R C, Merrifield R E 1970 Phys. Rev. B 1 896

    [18]

    Bouchriha H, Ern V, Fave J L, Guthmann C, Schott M 1978 J. Phys. France 39 257

    [19]

    Jadhav P J, Brown P R, Thompson N, Wunsch B, Mohanty A, Yost S R, Hontz E, Van Voorhis T, Bawendi M G, Bulovic V, Baldo M A 2012 Adv. Mater. 246169

    [20]

    Ni G, Nguyen T D, Vardeny Z V 2011 Appl. Phys. Lett. 98 263302

    [21]

    Qiming Peng, Weijun Li, Shitong Zhang, Ping Chen, Feng Li, Yuguang Ma 2013 Adv. Opt. Mater. 1 362

    [22]

    Piland G B, Burdett J J, Dharmalingam Kurunthu, Bardeen C J 2013 J. Phys. Chem. C 117 1224

    [23]

    Tarasov V V, Zoriniants G E, Shushin A I, Triebel M M 1997 Chem. Phys. Lett. 267 58

    [24]

    Zhao J Q, Ding M, Zhang T Y, Zhang N Y, Pang Y T, Ji Y J, Chen Y, Wang F X, Fu G 2012 Chin. Phys. B 21 057110

    [25]

    Geacintov N, Pope M, Vogel F 1969 Phys. Rev. Lett. 22 593

    [26]

    Kihyun Kim, Min Ki Kim, Han Saem Kang, Mi Yeon Cho, Jinsoo Joo, Ju Hee Kim, Kyung Hwan Kim, Chang Seop Hong, Dong Hoon Choi 2007 Synth. Met. 157 481

    [27]

    Demétrio A da Silva Filho, Kim E G, Brédas J L 2005 Adv. Mater. 17 1072

    [28]

    Takeya J, Nishikawa T, Takenobu T, Kobayashi S, Iwasa Y, Mitani T, Goldmann C, Krellner C, Batlogg B 2004 Appl. Phys. Lett. 85 5078

    [29]

    Congyun Zhang, Chuan Du, Hui Yan, Shiling Yuan, Lifeng Chi 2013 RSC Adv. 3 15404

    [30]

    Thorsten Vehoff, Bj\"orn Baumeier, Alessandro Troisi, Denis Andrienko 2010 J. Am. Chem. Soc. 132 11702

    [31]

    Chan M Y, Lai S L, Wong F L, Lengyel O, Lee C S, Lee S T 2003 Chem. Phys. Lett. 371 700

    [32]

    Zhang Y, Liu R, Lei Y L, Xiong Z H 2009 Appl. Phys. Lett. 94 083307

    [33]

    Congyun Zhang, Zhen Xu, Hui Yan, Fengfeng Gao, Shiling Yuan 2013 Chem. Phys. Lett. 571 38

    [34]

    Chen P, Lei Y L, Song Q L, Zhang Y, Liu R, Zhang Q M, Xiong Z H 2009 Appl. Phys. Lett. 95 213304

    [35]

    Yichun Luo, Hany Aziz, Richard Klenkler, Gu Xu, Zoran D Popovic 2008 Chem. Phys. Lett. 458 319

    [36]

    Jiang J, Pearson J, Bader S 2008 Phys. Rev. B 77 035303

  • [1] 魏福贤, 刘俊宏, 彭腾, 汪波, 朱洪强, 陈晓莉, 熊祖洪. 利用热激子反向系间窜越的特征磁响应探测界面型OLED中的Dexter能量传递过程.  , 2023, 72(18): 187201. doi: 10.7498/aps.72.20230998
    [2] 王辉耀, 魏福贤, 吴雨廷, 彭腾, 刘俊宏, 汪波, 熊祖洪. 激基复合物有机发光二极管中平衡载流子增强电荷转移态的反向系间窜越过程.  , 2023, 72(17): 177201. doi: 10.7498/aps.72.20230949
    [3] 刘启沛, 张程贤, 薛正远. 强驱动单态-三重态量子比特的高保真单比特门.  , 2023, 72(20): 200302. doi: 10.7498/aps.72.20230906
    [4] 李万娇, 关云霞, 保希, 王成, 宋家一, 徐爽, 彭柯敖, 陈丽佳, 牛连斌. Alq3/HAT-CN叠层电致发光器件的激子调控机制探究.  , 2023, 72(21): 217201. doi: 10.7498/aps.72.20230973
    [5] 赵茜, 陈敬, 彭腾, 刘俊宏, 汪波, 陈晓莉, 熊祖洪. 激基复合物有机发光二极管中系间窜越和反向系间窜越过程的非单调电流依赖关系.  , 2023, 72(16): 167201. doi: 10.7498/aps.72.20230765
    [6] 宁亚茹, 赵茜, 汤仙童, 陈敬, 吴凤娇, 贾伟尧, 陈晓莉, 熊祖洪. 利用发光磁效应研究同分异构体mCBP和CBP作为给体的激基复合物器件的微观过程.  , 2022, 71(8): 087201. doi: 10.7498/aps.71.20212068
    [7] 王辉耀, 宁亚茹, 吴凤娇, 赵茜, 陈敬, 朱洪强, 魏福贤, 吴雨廷, 熊祖洪. 纯红荧烯器件中极化子对的系间窜越与高能三重态激子的反向系间窜越过程“消失”的原因.  , 2022, 71(21): 217201. doi: 10.7498/aps.71.20221060
    [8] 颜俊, 王子毅, 曾若生, 邹炳锁. 零维Sb3+掺杂Rb7Bi3Cl16金属卤化物的三重态自陷激子发射.  , 2021, 70(24): 247801. doi: 10.7498/aps.70.20211024
    [9] 张尧, 张杨, 董振超. 单分子尺度的光量子态调控与单分子电致发光研究.  , 2018, 67(22): 223301. doi: 10.7498/aps.67.20181718
    [10] 邵文莉, 林永锋, 林枫灿, 彭开美, 张蕾, 王惠, 刘海洋, 计亮年. 中心金属Ga原子对Corrole三重态动力学及单线态氧产生的影响.  , 2012, 61(20): 207801. doi: 10.7498/aps.61.207801
    [11] 高峰, 王叶兵, 田晓, 许朋, 常宏. 锶原子三重态谱线的观测及在光钟中的应用.  , 2012, 61(17): 173201. doi: 10.7498/aps.61.173201
    [12] 冯胜奇, 方海, 邱庆春. 在群论框架下电子三重态与声子耦合的理论研究.  , 2011, 60(1): 017105. doi: 10.7498/aps.60.017105
    [13] 孙震, 安忠, 李元, 刘文, 刘德胜, 解士杰. 高聚物中极化子和三重态激子的碰撞过程研究.  , 2009, 58(6): 4150-4155. doi: 10.7498/aps.58.4150
    [14] 李晓薇. 铁磁超导态/绝缘层/自旋三重态p波超导体结的直流Josephson电流.  , 2006, 55(12): 6637-6642. doi: 10.7498/aps.55.6637
    [15] 李晓薇, 刘淑静. 正常金属/自旋三重态p波超导体结隧道谱的奇异性.  , 2006, 55(2): 834-838. doi: 10.7498/aps.55.834
    [16] 周一阳. 自旋三重态对3d~4/3d~6离子零场分裂参量的影响.  , 1995, 44(1): 122-127. doi: 10.7498/aps.44.122
    [17] 习金华, 吴礼金. 原子实极化效应对ScⅡ离子3d2三重态超精细相互作用的影响.  , 1992, 41(3): 370-378. doi: 10.7498/aps.41.370
    [18] 厉彦民, 章立源. 对角无序对三重态双极化子系统的超导电性的影响.  , 1987, 36(6): 796-800. doi: 10.7498/aps.36.796
    [19] 厉彦民, 章立源. 三重态双极化子系统的超导与铁磁共存.  , 1987, 36(2): 157-164. doi: 10.7498/aps.36.157
    [20] 厉彦民, 章立源. 三重态双极化子的超导A相与B相.  , 1986, 35(12): 1616-1623. doi: 10.7498/aps.35.1616
计量
  • 文章访问数:  5689
  • PDF下载量:  186
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-04
  • 修回日期:  2015-05-14
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map