搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Thomas-Fermi-Kirzhnits模型的物态方程研究

王坤 史宗谦 石元杰 吴坚 贾申利 邱爱慈

引用本文:
Citation:

基于Thomas-Fermi-Kirzhnits模型的物态方程研究

王坤, 史宗谦, 石元杰, 吴坚, 贾申利, 邱爱慈

Study on equation of state based on Thomas-Fermi-Kirzhnits model

Wang Kun, Shi Zong-Qian, Shi Yuan-Jie, Wu Jian, Jia Shen-Li, Qiu Ai-Ci
PDF
导出引用
  • 本文针对丝阵Z箍缩等高能量密度物理实验的数值模拟研究, 建立了一种适用温度、密度范围宽的三项式半经验物态方程. 三项式半经验物态方程包括零温自由能项, 电子热贡献项和离子热贡献项. 零温自由能项采用多项式拟合的方法确定. 多项式系数通过多项式计算的结果与高压缩比区域和压缩比为1时零温Thomas-Fermi-Kirzhnits模型计算的结果对应相等得到. 离子对物态方程的热贡献采用一种准谐振模型, 此谐振模型可以描述离子在固态相中的行为, 并且在高温度、低密度区域趋近于理想气体物态方程. 电子对物态方程的热贡献采用含温Thomas-Fermi-Kirzhnits模型计算. 利用所建立的三项式半经验物态方程计算了铝的等温压缩曲线, 并与实验数据做了对比. 给出了很宽温度、密度范围内铝的压强, 其数据与相应的SESAME数据库数据做了对比.
    A wide-range semi-empirical equation of state is constructed for numerical simulation of high-energy density experiments, such as, wire-array Z-pinch etc. The equation of state consists of zero-temperature free energy term, and thermal contributions of electron and ion. Thomas-Fermi model, which was firstly put forward by Thomas and Fermi, is initially developed to study the electron distribution of multi-electron atoms. Since its advent, this model has been widely used in solid-state physics, atomic physics, astrophysics and equation of state computations. It is a particularly important model to describe the behavior of matter under extreme conditions of high temperature and high density. This model provides reasonably accurate results that are validated experimentally for some thermodynamic quantities, such as the pressure. However, the Thomas-Fermi model yields a pressure of a few GPa under normal density even at very low temperature, and the pressure is always positive, indicating an obvious limitation of this model. Kirzhnits has evaluated the influence of quantum effect and exchange effect on temperature-dependent Thomas-Fermi model and their contributions to the Thomas-Fermi equation of state. Basically, the Thomas-Fermi model with its quantum and exchange corrections which is called Thomas-Fermi-Kirzhnits model, can be applied to calculate the thermal contribution of electrons to the thermodynamic functions, which can lower the pressure given from the Thomas-Fermi model. The zero-temperature free energy term in the semi-empirical equation of state is described by a polynomial expression. The coefficients of the polynomial expression is calculated by using zero-temperature Thomas-Fermi-Kirzhnits model and the relation between thermodynamic quantities. A quasi-harmonic model is adopted to describe the behavior of ions. It is originally applied to calculate the contribution of ions in the condensed state. However, the quasi-harmonic model is close to an ideal equation of state in the high-temperature and low-density region. This model makes the description of the behavior of ions in the phase transition from the solid state to plasma state be approximated. Thomas-Fermi-Kirzhnits model is adopted to calculate the thermal contribution of electrons. The semi-empirical equation of state has the advantages of less calculation and clear physical concepts. Experimental data of isothermal compression at 300 K is fruitful and accurate. They can be used to verify the results of the semi-empirical equation of state. An isothermal compression curve is calculated by the present work and compared with experimental data. The pressures over a wide-range of temperature and density are derived and compared with corresponding data of SESAME database. The trajectory of the electrical explosion of aluminum is demonstrated from solid state to ideal plasma state.
    • 基金项目: 国家自然科学基金(批准号: 51322706, 51237006, 51325705), 教育部新世纪优秀人才支持计划(批准号: NCET-11-0428)和中央高校基本科研业务费专项资金资助的课题.
    • Funds: Project supported in part by the National Science Foundation of China (Grant Nos. 51322706, 51237006, 51325705), in part by the Program for New Century Excellent Talents in University, China (Grant No. NCET-11-0428), and in part by the Fundamental Research Funds for the Central Universities.
    [1]

    Sheng L, Wang L P, Wu J, Li Y, Peng B D, Zhang M 2011 Chin. Phys. B 20 055202

    [2]

    Zhang Y, Chen Q F, Gu Y J, Cai L C, Lu T C 2007 Acta Phys. Sin. 56 1318 (in Chinese) [张颖, 陈其峰, 顾云军, 蔡灵仓, 卢铁城 2007 56 1318]

    [3]

    Eliezer S, Ghatak A, Hora H 2002 Fundamentals of equations of state (London: World Scientific) p153

    [4]

    Lin H L, Zhang R Q 1991 Chin. J. High Pressure Phys. 5 62 (in Chinses) [林华令, 张若棋 1991 高压 5 62]

    [5]

    Tang W H, Zhang R Q 2008 Introduction to theory and computation of equation of state (Beijing: Higher Education Press) p254 (in Chinese) [汤文辉, 张若棋 物态方程理论及计算概论 (北京: 高等教育出版社) 第254页]

    [6]

    Ji G F, Zhang Y L, Cui H L, Li X F, Zhao F, Meng C M, Song Z F 2009 Acta Phys. Sin. 58 4103 (in Chinese) [姬广富, 张艳丽, 崔红玲, 李晓凤, 赵峰, 孟川民, 宋振飞 2009 58 4103]

    [7]

    Meng C M, Ji G F, Huang H J 2005 Chin. J. High Pressure Phys. 19 253 (in Chinses) [孟川民, 姬广富, 黄海军 2005 高压 19 353]

    [8]

    Yu J D, Li P, Wang W Q, Wu Q 2014 Acta Phys. Sin. 63 116401 (in Chinese) [于继东, 李平, 王文强, 吴强 2014 63 116401]

    [9]

    Shemyakin O P, Levashov P R, Khishchenko K V 2012 Contrib. Plasma Phys. 52 37

    [10]

    Duan Y Y, Guo Y H, Qiu A C 2011 Nucl. Fusion Plasma Phys. 31 97 (in Chinese) [段耀勇, 郭永辉, 邱爱慈 2011 核聚变与等立体物理 31 97]

    [11]

    Shemyakin O P, Levashov P R, Obruchkova L R, Khishchenko K V 2010 J. Phys. A: Math. Theor. 43 335003

    [12]

    Kirzhnits D A 1957 Soviet Phys. JETP 5 64

    [13]

    Chittenden J P, Lebedev S V, Ruiz-Camacho J, Beg F N, Bland S N, Jennings C A, Bell A R, Haines M G, Pikuz S A, Shelkovenko T A, Hammer D A 2000 Phys. Rev. E 61 4370

    [14]

    Khishchenko K V 2004 Tech. Phys. Lett. 30 829

    [15]

    Khishchenko K V 2008 J. Phys.: Conf. Ser. 121 022025

    [16]

    McCarthy S L 1965 Lawrence Radiation Laboratory Report: UCRL-14365

    [17]

    Latter R 1955 Phys. Rev. 99 1854

    [18]

    Shi Z Q, Wang K, Li Y, Shi Y J, Wu J, Jia S L 2014 Phys. Plasmas 21 032702

    [19]

    Nellis W J, Moriarty J A, Mitchell A C, Ross M, Dandrea R G, Ashcroft N W, Holmes N C, Gathers G R 1988 Phys. Rev. Lett. 60 1414

    [20]

    Akahama Y, Nishimura M, Kinoshita K, Kawamura H, Ohishi Y 2006 Phys. Rev. Lett. 96 045505

    [21]

    Cochrane K, Desjarlais M, Haill T, Lawrence J, Knudson M, Dunham G 2006 Sandia Report SAND2006-1739

  • [1]

    Sheng L, Wang L P, Wu J, Li Y, Peng B D, Zhang M 2011 Chin. Phys. B 20 055202

    [2]

    Zhang Y, Chen Q F, Gu Y J, Cai L C, Lu T C 2007 Acta Phys. Sin. 56 1318 (in Chinese) [张颖, 陈其峰, 顾云军, 蔡灵仓, 卢铁城 2007 56 1318]

    [3]

    Eliezer S, Ghatak A, Hora H 2002 Fundamentals of equations of state (London: World Scientific) p153

    [4]

    Lin H L, Zhang R Q 1991 Chin. J. High Pressure Phys. 5 62 (in Chinses) [林华令, 张若棋 1991 高压 5 62]

    [5]

    Tang W H, Zhang R Q 2008 Introduction to theory and computation of equation of state (Beijing: Higher Education Press) p254 (in Chinese) [汤文辉, 张若棋 物态方程理论及计算概论 (北京: 高等教育出版社) 第254页]

    [6]

    Ji G F, Zhang Y L, Cui H L, Li X F, Zhao F, Meng C M, Song Z F 2009 Acta Phys. Sin. 58 4103 (in Chinese) [姬广富, 张艳丽, 崔红玲, 李晓凤, 赵峰, 孟川民, 宋振飞 2009 58 4103]

    [7]

    Meng C M, Ji G F, Huang H J 2005 Chin. J. High Pressure Phys. 19 253 (in Chinses) [孟川民, 姬广富, 黄海军 2005 高压 19 353]

    [8]

    Yu J D, Li P, Wang W Q, Wu Q 2014 Acta Phys. Sin. 63 116401 (in Chinese) [于继东, 李平, 王文强, 吴强 2014 63 116401]

    [9]

    Shemyakin O P, Levashov P R, Khishchenko K V 2012 Contrib. Plasma Phys. 52 37

    [10]

    Duan Y Y, Guo Y H, Qiu A C 2011 Nucl. Fusion Plasma Phys. 31 97 (in Chinese) [段耀勇, 郭永辉, 邱爱慈 2011 核聚变与等立体物理 31 97]

    [11]

    Shemyakin O P, Levashov P R, Obruchkova L R, Khishchenko K V 2010 J. Phys. A: Math. Theor. 43 335003

    [12]

    Kirzhnits D A 1957 Soviet Phys. JETP 5 64

    [13]

    Chittenden J P, Lebedev S V, Ruiz-Camacho J, Beg F N, Bland S N, Jennings C A, Bell A R, Haines M G, Pikuz S A, Shelkovenko T A, Hammer D A 2000 Phys. Rev. E 61 4370

    [14]

    Khishchenko K V 2004 Tech. Phys. Lett. 30 829

    [15]

    Khishchenko K V 2008 J. Phys.: Conf. Ser. 121 022025

    [16]

    McCarthy S L 1965 Lawrence Radiation Laboratory Report: UCRL-14365

    [17]

    Latter R 1955 Phys. Rev. 99 1854

    [18]

    Shi Z Q, Wang K, Li Y, Shi Y J, Wu J, Jia S L 2014 Phys. Plasmas 21 032702

    [19]

    Nellis W J, Moriarty J A, Mitchell A C, Ross M, Dandrea R G, Ashcroft N W, Holmes N C, Gathers G R 1988 Phys. Rev. Lett. 60 1414

    [20]

    Akahama Y, Nishimura M, Kinoshita K, Kawamura H, Ohishi Y 2006 Phys. Rev. Lett. 96 045505

    [21]

    Cochrane K, Desjarlais M, Haill T, Lawrence J, Knudson M, Dunham G 2006 Sandia Report SAND2006-1739

  • [1] 周少彤, 任晓东, 黄显宾, 徐强. 一种用于Z箍缩实验的软X射线成像系统.  , 2021, 70(4): 045203. doi: 10.7498/aps.70.20200957
    [2] 陈忠旺, 宁成. 基于MULTI2D-Z程序的Z箍缩动态黑腔形成过程模拟.  , 2017, 66(12): 125202. doi: 10.7498/aps.66.125202
    [3] 贾果, 黄秀光, 谢志勇, 叶君建, 方智恒, 舒桦, 孟祥富, 周华珍, 傅思祖. 液氘状态方程实验数据测量.  , 2015, 64(16): 166401. doi: 10.7498/aps.64.166401
    [4] 周洪强, 于明, 孙海权, 何安民, 陈大伟, 张凤国, 王裴, 邵建立. 混合物状态方程的计算.  , 2015, 64(6): 064702. doi: 10.7498/aps.64.064702
    [5] 但加坤, 任晓东, 黄显宾, 张思群, 周少彤, 段书超, 欧阳凯, 蔡红春, 卫兵, 计策, 何安, 夏明鹤, 丰树平, 王勐, 谢卫平. Z箍缩内爆产生的电磁脉冲辐射.  , 2013, 62(24): 245201. doi: 10.7498/aps.62.245201
    [6] 叶繁, 薛飞彪, 褚衍运, 司粉妮, 胡青元, 宁家敏, 周林, 杨建伦, 徐荣昆, 李正宏, 许泽平. 双层丝阵Z箍缩电流分配实验研究.  , 2013, 62(17): 175203. doi: 10.7498/aps.62.175203
    [7] 高启, 吴泽清, 张传飞, 李正宏, 徐荣昆, 祖小涛. Z箍缩Al等离子体发射谱的非局域平衡模拟.  , 2012, 61(1): 015201. doi: 10.7498/aps.61.015201
    [8] 郭帆, 李永东, 王洪广, 刘纯亮, 呼义翔, 张鹏飞, 马萌. Z箍缩装置外磁绝缘传输线全尺寸粒子模拟研究.  , 2011, 60(10): 102901. doi: 10.7498/aps.60.102901
    [9] 盛亮, 邱孟通, 黑东炜, 邱爱慈, 丛培天, 王亮平, 魏福利. 丝阵负载Z箍缩内爆动力学研究.  , 2011, 60(5): 055205. doi: 10.7498/aps.60.055205
    [10] 盛亮, 王亮平, 李阳, 彭博栋, 张美, 吴坚, 王培伟, 魏福利, 袁媛. 平面丝阵负载Z箍缩内爆动力学一维图像诊断.  , 2011, 60(10): 105205. doi: 10.7498/aps.60.105205
    [11] 朱希睿, 孟续军. 改进的含温有界原子模型对金的电子物态方程的计算.  , 2011, 60(9): 093103. doi: 10.7498/aps.60.093103
    [12] 袁都奇. Fermi气体在势阱中的最大囚禁范围与状态方程.  , 2011, 60(6): 060509. doi: 10.7498/aps.60.060509
    [13] 吴刚, 邱爱慈, 吕敏, 蒯斌, 王亮平, 丛培天, 邱孟通, 雷天时, 孙铁平, 郭宁, 韩娟娟, 张信军, 黄涛, 张国伟, 乔开来. “强光一号”Al丝阵Z箍缩产生K层辐射实验研究.  , 2009, 58(7): 4779-4786. doi: 10.7498/aps.58.4779
    [14] 宁 成, 丁 宁, 杨震华. “强光一号”装置上部分Z箍缩实验结果的物理分析.  , 2007, 56(1): 338-345. doi: 10.7498/aps.56.338
    [15] 过增元, 曹炳阳, 朱宏晔, 张清光. 声子气的状态方程和声子气运动的守恒方程.  , 2007, 56(6): 3306-3312. doi: 10.7498/aps.56.3306
    [16] 张 扬, 丁 宁. 轴向流对Z箍缩等离子体稳定性的影响.  , 2006, 55(5): 2333-2339. doi: 10.7498/aps.55.2333
    [17] 宁 成, 丁 宁, 刘 全, 杨震华. 双层钨丝阵的Z箍缩动力学过程研究.  , 2006, 55(7): 3488-3493. doi: 10.7498/aps.55.3488
    [18] 黄显宾, 杨礼兵, 顾元朝, 邓建军, 周荣国, 邹 杰, 周少彤, 张思群, 陈光华, 畅里华, 李丰平, 欧阳凯, 李 军, 杨 亮, 王 雄, 张朝辉. 氩气Z箍缩内爆动力学过程实验研究.  , 2006, 55(4): 1900-1906. doi: 10.7498/aps.55.1900
    [19] 姜旻昊, 孟续军. 用Hartree-Fock-Slater-Boltzmann-Saha模型研究等离子体细致组态原子结构及其状态方程.  , 2005, 54(2): 587-593. doi: 10.7498/aps.54.587
    [20] 宁 成, 李正宏, 华欣生, 徐荣昆, 彭先觉, 许泽平, 杨建伦, 郭 存, 蒋世伦, 丰树平, 杨礼兵, 晏成立, 宋凤军, V. P. Smirnov, Yu. G. Kalinin, A. S. Kingsep, A. S. Chernenko, E. V. Grabovsky. 铝-钨丝混编阵的Z-箍缩实验研究.  , 2004, 53(7): 2244-2249. doi: 10.7498/aps.53.2244
计量
  • 文章访问数:  6580
  • PDF下载量:  194
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-03
  • 修回日期:  2015-03-18
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map