搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用双光缔合光谱技术直接测量超冷铯分子0u+(6S1/2+6P1/2)长程态的转动常数的实验研究

胡晨阳 刘文良 徐润东 武寄洲 马杰 肖连团 贾锁堂

引用本文:
Citation:

利用双光缔合光谱技术直接测量超冷铯分子0u+(6S1/2+6P1/2)长程态的转动常数的实验研究

胡晨阳, 刘文良, 徐润东, 武寄洲, 马杰, 肖连团, 贾锁堂

Direct measurement of the rotational constant of 0u+(6S1/2+6P1/2) long-range state via double-pass spectroscopy

Hu Chen-Yang, Liu Wen-Liang, Xu Run-Dong, Wu Ji-Zhou, Ma Jie, Xiao Lian-Tuan, Jia Suo-Tang
PDF
导出引用
  • 实验获得了超冷铯分子6S1/2+6P1/2离解限下0u+长程态振动能级v=187的转动常数. 首先利用调制的荧光光谱技术获得了高分辨的转动量子数J=06的超冷铯分子纯转动光谱. 利用双光缔合光谱技术, 构建了高精度的频率参考信号, 进而得到了相邻转动能级间的频率间隔. 最后通过非刚性转子模型拟合得到了转动常数和离心畸变常数.
    In this paper, we obtain the rotational constant and the distortion constant of v=187 belonging to 0u+ state below the 6S1/2+6P1/2 disassociation limit. In our experiment, we first prepare the ultra-cold cesium sample in the MOT (magneto-optical trap) by six beams of pumping laser, one beam of repumping laser, and a pair of anti-Helmholtz coils. Then we construct a high-resolution frequency reference using the double-pass photoassociation technique. The double-pass photoassociation technique is a creative and robust method. We use a polarization beam splitter to split one laser beam from the laser to two beams-Laser Ⅰ and Laser Ⅱ; Laser Ⅱ then passes twice through an acousto-optic modulator (AOM) whose central frequency is 110 MHz, using a reflecting mirror and a convex lens before illuminating the MOT. We use two shutters-S1 and S2 to control Laser Ⅰ and Laser Ⅱ. Open S1 while keep S2 close to make Laser I interact with the MOT; and after the rotational spectroscopy of J=0-6 is observed, turn off S1 and turn on S2 immediately. Let laser II interact with MOT and obtain another part of spectroscopy that is exactly the same with J=6; we define this part of spectroscopy as J'=6. The frequency interval between J=6 and J'=6 is exactly 220 MHz for the scan process is strictly linear, and that can be an accurate frequency interval in our experiment. The laser intensities of these two laser beams have to be strictly equal in case of the laser-induced frequency shift. Using the frequency interval of 220 MHz, we can calculate the frequency interval of J=0-6. The detection method we used here is the trap loss spectroscopic technology by modulating fluorescence of cold atoms in the MOT, which allows a direct spectroscopy detection at the rovibrational levels for a very weak transition probability. With the frequency intervals of each rotational quantum number, we can fit the frequency intervals to the non-rigid model to derive the rotation constant B and distortion constant D which are crucial to precisely measure the full molecule potential curves as well as deepen our understanding of molecular formation. This kind of double-pass photoassociation technique not only can direct obtain the precise value of rotation constant B and distortion constant D as compared with the traditional photoassociation method, but also can obtain a relatively accurate potential energy curve. And another great advantage is that we are able to calculate the frequency intervals easily without the wavelength meter which is rather expensive and difficult to control.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2012CB921603)、长江学者和创新团队发展计划(批准号: IRT13076)、基金委重大研究计划培育项目(批准号: 91436108)、国家自然科学基金(批准号: 61378014, 61308023, 61378015, 11434007, 61275211)、教育部新教师基金(批准号: 20131401120012)、国家自然科学基金国家基础科学人才培养基金(批准号: J1103210)和山西省青年科技研究基金(批准号: 2013021005-1)资助的课题.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2012CB921603), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT13076), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91436108), the National Natural Science Foundation of China (Grant Nos. 61378014, 61308023, 61378015, 11434007, 61275211), the New Teacher Fund of the Ministry of Education of China (Grant No. 20131401120012), the Fund for Fostering Talents in Basic Science of the National Natural Science Foundation of China (Grant No. J1103210) and the Natural Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 2013021005-1).
    [1]

    Kajita M 2004 Phys. Rev. A 69 012709

    [2]

    Jochim S, Bartenstein M, Altmeyer A, Hendl G, Chin C, Hecker Denschlag J, Grimm R 2003 Phys. Rev. Lett. 91 240402

    [3]

    Wynar R, Freeland R S, Han D J, Ryu C, Heinzen D J 2000 Science 287 1016

    [4]

    Pillet R, Drag C, Tolra B L 2001 Laser Phys. 11 480

    [5]

    Tsai C, Freeland R, Vogels J, Boesten H 1997 Phys. Rev. Lett. 79 1245

    [6]

    Wang J M 1999 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese) [王军民 1999 博士学位论文 (太原: 山西大学)]

    [7]

    Jones K M, Tiesinga E, Lett P D, Julienne P S 2006 Rev. Mod. Phys. 78 483

    [8]

    Jiang K J, Li K, Wang J, Zhan M S 2006 Acta Phys. Sin. 55 125 (in Chinese) [江开军, 李可, 王瑾, 詹明生 2006 55 125]

    [9]

    Zhang Y C, Wu J Z, Ma J, Zhao Y T, Wang L R, Xiao L T, Jia S T 2010 Acta Phys. Sin. 59 5418 (in Chinese) [张一驰, 武寄洲, 马杰, 赵延霆, 汪丽蓉, 肖连团, 贾锁堂 2010 59 5418]

    [10]

    Zhang W, Huang Y, Xie T, Wang G R, Cong S L 2010 Phys Rev. A 82 063411

    [11]

    Fioretti A, Comparat D, Drag C, Amiot C, Dulieu O, Masnou-Seeuws F, Pillet P 1999 Eur. Phys. J. D 5 389

    [12]

    Fioretti A, Comparat D, Drag C, Amiot C, Dulieu O, Masnou-Seeuws F, Pillet P 1998 Phys. Rev. Lett. 80 4402

    [13]

    Comparat D, Drag C, Fioretti A, Dulieu O, Pillet P 1999 J. Mol. Spectrosc. 195 229

    [14]

    Pichler M, Chen H, Stwalley W C 2004 J. Chem. Phys. 121 6779

    [15]

    Ma J, Wang L R, Zhao Y T, Xiao L T, Jia S 2009 J. Mol. Spectrosc. 255 106

    [16]

    Chen P, Li Y Q, Zhang Y C, Wu J Z, Ma J, Xiao L T, Jia S 2013 Chin. Phys. B 22 093301

    [17]

    Ma J, Chen P, Liu W L, Feng G S, Li Y Q, Wu J Z, Xiao L T, Jia S T 2010 Acta Phys. Sin. 62 223301 (in Chinese) [马杰, 陈鹏, 刘文良, 冯国胜, 李玉清, 武寄洲, 肖连团, 贾锁堂 2010 62 223301]

    [18]

    Wu J Z, Ma J, Zhang Y C, Li Y Q, Wang L R, Zhao Y T, Chen G, Xiao L T, Jia S T 2011 Phys. Chem. Chem. Phys. 13 18921

    [19]

    Bransden B H, Joachain C J 1983 Physics of Atoms and Molecules (Essex: Longman Publising Group)

  • [1]

    Kajita M 2004 Phys. Rev. A 69 012709

    [2]

    Jochim S, Bartenstein M, Altmeyer A, Hendl G, Chin C, Hecker Denschlag J, Grimm R 2003 Phys. Rev. Lett. 91 240402

    [3]

    Wynar R, Freeland R S, Han D J, Ryu C, Heinzen D J 2000 Science 287 1016

    [4]

    Pillet R, Drag C, Tolra B L 2001 Laser Phys. 11 480

    [5]

    Tsai C, Freeland R, Vogels J, Boesten H 1997 Phys. Rev. Lett. 79 1245

    [6]

    Wang J M 1999 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese) [王军民 1999 博士学位论文 (太原: 山西大学)]

    [7]

    Jones K M, Tiesinga E, Lett P D, Julienne P S 2006 Rev. Mod. Phys. 78 483

    [8]

    Jiang K J, Li K, Wang J, Zhan M S 2006 Acta Phys. Sin. 55 125 (in Chinese) [江开军, 李可, 王瑾, 詹明生 2006 55 125]

    [9]

    Zhang Y C, Wu J Z, Ma J, Zhao Y T, Wang L R, Xiao L T, Jia S T 2010 Acta Phys. Sin. 59 5418 (in Chinese) [张一驰, 武寄洲, 马杰, 赵延霆, 汪丽蓉, 肖连团, 贾锁堂 2010 59 5418]

    [10]

    Zhang W, Huang Y, Xie T, Wang G R, Cong S L 2010 Phys Rev. A 82 063411

    [11]

    Fioretti A, Comparat D, Drag C, Amiot C, Dulieu O, Masnou-Seeuws F, Pillet P 1999 Eur. Phys. J. D 5 389

    [12]

    Fioretti A, Comparat D, Drag C, Amiot C, Dulieu O, Masnou-Seeuws F, Pillet P 1998 Phys. Rev. Lett. 80 4402

    [13]

    Comparat D, Drag C, Fioretti A, Dulieu O, Pillet P 1999 J. Mol. Spectrosc. 195 229

    [14]

    Pichler M, Chen H, Stwalley W C 2004 J. Chem. Phys. 121 6779

    [15]

    Ma J, Wang L R, Zhao Y T, Xiao L T, Jia S 2009 J. Mol. Spectrosc. 255 106

    [16]

    Chen P, Li Y Q, Zhang Y C, Wu J Z, Ma J, Xiao L T, Jia S 2013 Chin. Phys. B 22 093301

    [17]

    Ma J, Chen P, Liu W L, Feng G S, Li Y Q, Wu J Z, Xiao L T, Jia S T 2010 Acta Phys. Sin. 62 223301 (in Chinese) [马杰, 陈鹏, 刘文良, 冯国胜, 李玉清, 武寄洲, 肖连团, 贾锁堂 2010 62 223301]

    [18]

    Wu J Z, Ma J, Zhang Y C, Li Y Q, Wang L R, Zhao Y T, Chen G, Xiao L T, Jia S T 2011 Phys. Chem. Chem. Phys. 13 18921

    [19]

    Bransden B H, Joachain C J 1983 Physics of Atoms and Molecules (Essex: Longman Publising Group)

  • [1] 陈润, 邵旭萍, 黄云霞, 杨晓华. BrF分子电磁偶极跃迁转动超精细微波谱模拟.  , 2023, 72(4): 043301. doi: 10.7498/aps.72.20221957
    [2] 白素英, 韩小萱, 郝丽萍, 焦月春, 赵建明. 铯31D5/2+6S1/2(F = 4)长程里德伯分子的光缔合光谱.  , 2023, 72(14): 143201. doi: 10.7498/aps.72.20230520
    [3] 白景旭, 韩小萱, 白素英, 焦月春, 赵建明, 贾锁堂. 超冷铯(60D5/2)2 Rydberg分子的双色光缔合光谱.  , 2018, 67(23): 233201. doi: 10.7498/aps.67.20181743
    [4] 马杰, 王晓峰, 辛统钰, 刘文良, 李玉清, 武寄洲, 肖连团, 贾锁堂. 超冷铯分子0u+(6P3/2)长程态的高灵敏光缔合光谱研究.  , 2015, 64(15): 153303. doi: 10.7498/aps.64.153303
    [5] 赵延霆, 元晋鹏, 姬中华, 李中豪, 孟腾飞, 刘涛, 肖连团, 贾锁堂. 光缔合制备超冷铯分子的温度测量.  , 2014, 63(19): 193701. doi: 10.7498/aps.63.193701
    [6] 汪丽蓉, 冯薪林, 马杰, 赵延霆, 肖连团, 贾锁堂. 超冷铯分子0g-长程态的振转光谱研究.  , 2013, 62(18): 183301. doi: 10.7498/aps.62.183301
    [7] 马杰, 陈鹏, 刘文良, 冯国胜, 李玉清, 武寄洲, 肖连团, 贾锁堂. 超冷铯分子纯长程态转动常数的精密测量.  , 2013, 62(22): 223301. doi: 10.7498/aps.62.223301
    [8] 杨艳, 姬中华, 元晋鹏, 汪丽蓉, 赵延霆, 马杰, 肖连团, 贾锁堂. 超冷铷铯极性分子振转光谱的实验研究.  , 2012, 61(21): 213301. doi: 10.7498/aps.61.213301
    [9] 元晋鹏, 姬中华, 杨艳, 张洪山, 赵延霆, 马杰, 汪丽蓉, 肖连团, 贾锁堂. 飞行时间质谱探测磁光阱中超冷分子离子的实验研究.  , 2012, 61(18): 183301. doi: 10.7498/aps.61.183301
    [10] 彭志敏, 丁艳军, 翟晓东. 基于火焰发射光谱的转动温度和振动温度的测量.  , 2011, 60(10): 104702. doi: 10.7498/aps.60.104702
    [11] 施德恒, 孙金锋, 朱遵略, 马 恒, 杨向东. 7Li2(X1Σ+g)分子的振动能级、转动惯量及离心畸变常数.  , 2008, 57(1): 165-171. doi: 10.7498/aps.57.165
    [12] 汪丽蓉, 马 杰, 张临杰, 肖连团, 贾锁堂. 基于振幅调制的超冷铯原子高分辨光缔合光谱的实验研究.  , 2007, 56(11): 6373-6377. doi: 10.7498/aps.56.6373
    [13] 孙晓鹏, 冯志芳, 李卫东, 贾锁堂. Λ型原子-分子三能级系统的分子转化率问题.  , 2007, 56(10): 5727-5733. doi: 10.7498/aps.56.5727
    [14] 杨传路, 朱正和. Ar-HCl转动跃迁光谱线压力加宽截面的理论计算.  , 1999, 48(10): 1852-1857. doi: 10.7498/aps.48.1852
    [15] 凌志华. 反铁电液晶TFMHxPOCBC-D2中CD2偏振红外光谱及手性烷基链受阻转动的研究.  , 1998, 47(8): 1318-1324. doi: 10.7498/aps.47.1318
    [16] 赵庆勋, 李赞良, 郑少白. CT-6B托卡马克等离子体角向转动的光谱测量.  , 1997, 46(1): 94-100. doi: 10.7498/aps.46.94
    [17] 陆庆正, 丁传凡, 高建谧, 孔繁敖. SiH4紫外多光子电离光谱的转动分析.  , 1991, 40(1): 39-42. doi: 10.7498/aps.40.39
    [18] 曾锡之. 范德瓦耳斯分子K39Xe129中的自旋-转动对自旋交换耦合常数之比的确定.  , 1985, 34(10): 1249-1260. doi: 10.7498/aps.34.1249
    [19] 张之翔. 晶体转动时非常光的轨迹.  , 1980, 29(11): 1483-1489. doi: 10.7498/aps.29.1483
    [20] 江安才. 直线式不对称三原分子之振动转动光谱及其势能函数.  , 1944, 5(1): 49-63. doi: 10.7498/aps.5.49
计量
  • 文章访问数:  5820
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-13
  • 修回日期:  2015-03-16
  • 刊出日期:  2015-07-05

/

返回文章
返回
Baidu
map