搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于噪声辅助非均匀采样复数据经验模态分解的混沌信号降噪

王小飞 曲建岭 高峰 周玉平 张翔宇

引用本文:
Citation:

基于噪声辅助非均匀采样复数据经验模态分解的混沌信号降噪

王小飞, 曲建岭, 高峰, 周玉平, 张翔宇

A chaotic signal denoising method developed on the basis of noise-assisted nonuniformly sampled bivariate empirical mode decomposition

Wang Xiao-Fei, Qu Jian-Ling, Gao Feng, Zhou Yu-Ping, Zhang Xiang-Yu
PDF
导出引用
  • 鉴于非均匀采样复数据经验模态分解(NSBEMD)相对传统分解方法的优势和噪声的NSBEMD特性,提出了一种基于噪声辅助NSBEMD的混沌信号自适应降噪方法. 该方法首先以含噪混沌信号和高斯白噪声分别为实、虚部来构造复数据并进行NSBEMD,然后根据虚部各IMF的能量来估算实部各IMF中包含的噪声能量,最后根据噪声能量的估计值对实部IMF进行奇异值分解(SVD)降噪. 噪声估计实验验证了噪声能量估计方法的可行性,而Lorenz信号和太阳黑子月平均数的降噪实验则表明,相对于现有EMD降噪方法,本文方法能够进一步消除噪声,更清晰地恢复出混沌吸引子的拓扑结构.
    According to the advantages of nonuniformly sampled bivariate empirical mode decomposition and the characteristics of noise after it, an adaptive chaotic signal denoising method is proposed based on the noise-assisted nonuniformly sampled bivariate empirical mode decomposition. Firstly, a complex signal is constructed for the noise-assisted nonuniformly sampled bivariate empirical mode decomposition, by using noisy chaotic signal and gaussian white noise as the real part and imaginary part respectively; secondly, the noise energy of each intrinsic mode function in the real part is estimated according to the energy of each intrinsic mode function in the imaginary part; and finally, from the above results, each intrinsic mode function in the real part is denoised by using the singular value decomposition. Noise energy estimate numerical experiment validates the feasibility of this method, and the denoising tests for Lorenz signal and monthly sunspot data indicate that our method shows advantages in both noise reduction and chaotic attractor topological configuration reversion.
    • 基金项目: 国家自然科学基金(批准号:61372027)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61372027).
    [1]

    Zhang Y 2013 Chin. Phys. B 22 050502

    [2]
    [3]

    Wang W B, Zhang X D, Wang X L 2013 Acta Phys. Sin. 62 020501 (in Chinese)[王文波, 张晓东, 汪祥莉 2013 62 020501]

    [4]

    Qu J L, Wang X F, Qiao Y C, Gao F, Di Y Z 2014 Chin. Phys. Lett. 31 020503

    [5]
    [6]

    Schreiber T 1993 Phys. Rev. E 47 2401

    [7]
    [8]
    [9]

    Dedieu H, Kisel A 1999 Int. J. Circuit Theory Appl. 27 577

    [10]

    Deng K, Zhang L, Luo M K 2011 Chin. Phys. Lett. 28 020502

    [11]
    [12]
    [13]

    Xu L Q, Hu L Q, Li E Z 2012 Chin. Phys. B 21 055208

    [14]
    [15]

    Xie Z B, Feng J C 2009 Chin. Phys. Lett. 26 030501

    [16]
    [17]

    Fu M J, Zhuang J J, Hou F Z, Zhan Q B, Shao Y 2010 Chin. Phys. B 19 058701

    [18]
    [19]

    Tang J 2014 Acta Phys. Sin. 63 049701 (in Chinese)[唐洁 2014 63 049701]

    [20]

    Boudraa A, Cexus J 2007 IEEE Trans. Instrum. Measur. 56 2196

    [21]
    [22]
    [23]

    Khan J, Bhuiyan S, Murphy G, Alam M 2011 Opt. Pattern Recognit. 8055 805504

    [24]

    Chacko A, Ari S 2012 IEEE ICAESM Nagapattinam, Tamil Nadu, March, 30-31, 2012 p6

    [25]
    [26]
    [27]

    Olufemi A, Vladimir A, Auroop R 2011 IEEE Sensors J. 11 2565

    [28]
    [29]

    Kopsinis Y, McLaughlin S 2009 IEEE Trans. Signal Process. 57 1351

    [30]
    [31]

    Wang W B, Zhang X D, Wang X L 2013 Acta Phys. Sin. 62 069701 (in Chinese)[王文波, 张晓东, 汪祥莉 2013 62 069701]

    [32]
    [33]

    Wang W B, Wang X L 2013 Acta Phys. Sin. 62 209701 (in Chinese)[王文波, 汪祥莉 2013 62 209701]

    [34]
    [35]

    Hassan M, Boudaoud S, Terrien J, Karlsson B, Marque C 2011 IEEE Trans. Biomed. Eng. 58 2441

    [36]
    [37]

    Sweeney K T, McLoone S F 2013 IEEE Trans. Biomed. Eng. 60 97

    [38]
    [39]

    Tanaka T, Mandic D P 2006 IEEE Signal Process Lett. 14 101

    [40]

    Altaf M U B, Gautama T, Tanaka T 2007 IEEE ICASSP 3 1009

    [41]
    [42]
    [43]

    Rilling G, Flandrin P, Gonalves P 2007 IEEE Signal Process Lett. 14 936

    [44]

    Ahrabian A, Rehman N U, Mandic E 2013 IEEE Signal Process Lett. 20 245

    [45]
    [46]
    [47]

    Wu Z H, Huang N E 2009 Advances in Adaptive Data Analysis 1 1

    [48]

    Qu J L, Wang X F, Gao F, Zhou Y P, Zhang X F 2014 Acta Phys. Sin. 63 110201 (in Chinese)[曲建岭, 王小飞, 高峰, 周玉平, 张翔宇 2014 63 110201]

    [49]
    [50]

    Wu Z, Huang N E 2004 Proc. R. Soc. London, Ser. A 460 1597

    [51]
    [52]
    [53]

    Flandrin P 2004 Int. J. Wavelets Multiresolution Inf. Process. 2 1

    [54]
    [55]

    Perrin E, Harba R, Jennane R 2002 IEEE Signal Process Lett. 9 382

  • [1]

    Zhang Y 2013 Chin. Phys. B 22 050502

    [2]
    [3]

    Wang W B, Zhang X D, Wang X L 2013 Acta Phys. Sin. 62 020501 (in Chinese)[王文波, 张晓东, 汪祥莉 2013 62 020501]

    [4]

    Qu J L, Wang X F, Qiao Y C, Gao F, Di Y Z 2014 Chin. Phys. Lett. 31 020503

    [5]
    [6]

    Schreiber T 1993 Phys. Rev. E 47 2401

    [7]
    [8]
    [9]

    Dedieu H, Kisel A 1999 Int. J. Circuit Theory Appl. 27 577

    [10]

    Deng K, Zhang L, Luo M K 2011 Chin. Phys. Lett. 28 020502

    [11]
    [12]
    [13]

    Xu L Q, Hu L Q, Li E Z 2012 Chin. Phys. B 21 055208

    [14]
    [15]

    Xie Z B, Feng J C 2009 Chin. Phys. Lett. 26 030501

    [16]
    [17]

    Fu M J, Zhuang J J, Hou F Z, Zhan Q B, Shao Y 2010 Chin. Phys. B 19 058701

    [18]
    [19]

    Tang J 2014 Acta Phys. Sin. 63 049701 (in Chinese)[唐洁 2014 63 049701]

    [20]

    Boudraa A, Cexus J 2007 IEEE Trans. Instrum. Measur. 56 2196

    [21]
    [22]
    [23]

    Khan J, Bhuiyan S, Murphy G, Alam M 2011 Opt. Pattern Recognit. 8055 805504

    [24]

    Chacko A, Ari S 2012 IEEE ICAESM Nagapattinam, Tamil Nadu, March, 30-31, 2012 p6

    [25]
    [26]
    [27]

    Olufemi A, Vladimir A, Auroop R 2011 IEEE Sensors J. 11 2565

    [28]
    [29]

    Kopsinis Y, McLaughlin S 2009 IEEE Trans. Signal Process. 57 1351

    [30]
    [31]

    Wang W B, Zhang X D, Wang X L 2013 Acta Phys. Sin. 62 069701 (in Chinese)[王文波, 张晓东, 汪祥莉 2013 62 069701]

    [32]
    [33]

    Wang W B, Wang X L 2013 Acta Phys. Sin. 62 209701 (in Chinese)[王文波, 汪祥莉 2013 62 209701]

    [34]
    [35]

    Hassan M, Boudaoud S, Terrien J, Karlsson B, Marque C 2011 IEEE Trans. Biomed. Eng. 58 2441

    [36]
    [37]

    Sweeney K T, McLoone S F 2013 IEEE Trans. Biomed. Eng. 60 97

    [38]
    [39]

    Tanaka T, Mandic D P 2006 IEEE Signal Process Lett. 14 101

    [40]

    Altaf M U B, Gautama T, Tanaka T 2007 IEEE ICASSP 3 1009

    [41]
    [42]
    [43]

    Rilling G, Flandrin P, Gonalves P 2007 IEEE Signal Process Lett. 14 936

    [44]

    Ahrabian A, Rehman N U, Mandic E 2013 IEEE Signal Process Lett. 20 245

    [45]
    [46]
    [47]

    Wu Z H, Huang N E 2009 Advances in Adaptive Data Analysis 1 1

    [48]

    Qu J L, Wang X F, Gao F, Zhou Y P, Zhang X F 2014 Acta Phys. Sin. 63 110201 (in Chinese)[曲建岭, 王小飞, 高峰, 周玉平, 张翔宇 2014 63 110201]

    [49]
    [50]

    Wu Z, Huang N E 2004 Proc. R. Soc. London, Ser. A 460 1597

    [51]
    [52]
    [53]

    Flandrin P 2004 Int. J. Wavelets Multiresolution Inf. Process. 2 1

    [54]
    [55]

    Perrin E, Harba R, Jennane R 2002 IEEE Signal Process Lett. 9 382

  • [1] 覃俭. 光源相位噪声对高斯玻色采样的影响.  , 2023, 72(5): 050302. doi: 10.7498/aps.72.20221766
    [2] 金江明, 谢添伟, 程昊, 肖岳鹏, D.Michael McFarland, 卢奂采. Duffing振子型结构声系统中声能量非互易传递的建模和实验研究.  , 2022, 71(10): 104301. doi: 10.7498/aps.71.20212181
    [3] 李赫, 郭新毅, 马力. 利用海洋环境噪声空间特性估计浅海海底分层结构及地声参数.  , 2019, 68(21): 214303. doi: 10.7498/aps.68.20190824
    [4] 杨棣, 王元美, 李军刚. 贝叶斯频率估计中频率的先验分布对有色噪声作用的影响.  , 2018, 67(6): 060301. doi: 10.7498/aps.67.20171911
    [5] 张揽月, 丁丹丹, 杨德森, 时胜国, 朱中锐. 阵元随机均匀分布球面阵列联合噪声源定位方法.  , 2017, 66(1): 014303. doi: 10.7498/aps.66.014303
    [6] 林旭, 罗志才. 一种新的卫星钟差Kalman滤波噪声协方差估计方法.  , 2015, 64(8): 080201. doi: 10.7498/aps.64.080201
    [7] 曾彭, 刘红星, 宁新宝, 庄建军, 张兴敢. 总体经验模态分解能量向量用于ECG能量分布的研究.  , 2015, 64(7): 078701. doi: 10.7498/aps.64.078701
    [8] 柳燕, 包景东. 非各态历经噪声的产生及其应用.  , 2014, 63(24): 240503. doi: 10.7498/aps.63.240503
    [9] 张歆, 张小蓟, 邢晓飞, 姜丽伟. 单载波频域均衡中的水声信道频域响应与噪声估计.  , 2014, 63(19): 194304. doi: 10.7498/aps.63.194304
    [10] 曲建岭, 王小飞, 高峰, 周玉平, 张翔宇. 基于复数据经验模态分解的噪声辅助信号分解方法.  , 2014, 63(11): 110201. doi: 10.7498/aps.63.110201
    [11] 王文波, 汪祥莉. 噪声模态单元预判的经验模态分解脉冲星信号消噪.  , 2013, 62(20): 209701. doi: 10.7498/aps.62.209701
    [12] 何亮, 杜磊, 黄晓君, 陈华, 陈文豪, 孙鹏, 韩亮. 金属互连电迁移噪声的非高斯性模型研究.  , 2012, 61(20): 206601. doi: 10.7498/aps.61.206601
    [13] 姚天亮, 刘海峰, 许建良, 李伟锋. 基于最大Lyapunov指数不变性的混沌时间序列噪声水平估计.  , 2012, 61(6): 060503. doi: 10.7498/aps.61.060503
    [14] 李扬, 郭树旭. 基于稀疏分解的大功率半导体激光器1/f噪声参数估计的新方法.  , 2012, 61(3): 034208. doi: 10.7498/aps.61.034208
    [15] 杨永锋, 吴亚锋, 任兴民, 裘焱. 随机噪声对经验模态分解非线性信号的影响.  , 2010, 59(6): 3778-3784. doi: 10.7498/aps.59.3778
    [16] 王慧巧, 俞连春, 陈勇. 离子通道噪声对神经元新陈代谢能量的影响.  , 2009, 58(7): 5070-5074. doi: 10.7498/aps.58.5070
    [17] 张振国, 郜峰利, 郭树旭, 李雪妍, 于思瑶. 一种估计半导体激光器1/f噪声参数的新方法.  , 2009, 58(4): 2772-2775. doi: 10.7498/aps.58.2772
    [18] 冷永刚, 王太勇. 二次采样用于随机共振从强噪声中提取弱信号的数值研究.  , 2003, 52(10): 2432-2437. doi: 10.7498/aps.52.2432
    [19] 陈小余. 单模费米热噪声信道量子容量的估计.  , 2001, 50(7): 1217-1220. doi: 10.7498/aps.50.1217
    [20] 黄显高, 徐健学, 何岱海, 夏军利, 吕泽均. 利用小波多尺度分解算法实现混沌系统的噪声减缩.  , 1999, 48(10): 1810-1817. doi: 10.7498/aps.48.1810
计量
  • 文章访问数:  6471
  • PDF下载量:  571
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-02
  • 修回日期:  2014-04-18
  • 刊出日期:  2014-09-05

/

返回文章
返回
Baidu
map