-
目前,虽然In和2N共掺对ZnO导电性能影响的实验研究均有报道,但是,In和2N共掺在ZnO中均是随机掺杂,没有考虑利用ZnO的单极性结构进行择优位向共掺. 第一性原理的出现能够解决该问题. 因此,本文采用密度泛函理论框架下的第一性原理平面波超软赝势方法,计算了未掺杂ZnO单胞、不同位向高共掺In-2N原子的Zn1-xInxO1-yNy(x= 0.0625,y=0.125)两种超胞模型的能带结构分布、态密度分布和吸收光谱分布. 计算结果表明,高共掺In-N原子沿c轴取向成键的条件下,掺杂浓度越低,体系更稳定、带隙越窄、有效质量越小、迁移率越增加、相对自由空穴浓度越增加、电导率越增加、导电性能越理想. 计算结果与实验结果相一致. 这对设计和制备导电功能材料有一定的理论指导作用.
-
关键词:
- In-2N高掺杂ZnO /
- 导电性能 /
- 第一性原理
Nowadays although the study of In-N co-doping effect on the photoelectric function of ZnO is relatively common, all of the In-N co-doped ZnO are of random doping, and the preferential locality doping using the unpolarized structure of ZnO has not been considered so far. Therefore, in this paper, based on the density functional theory using first-principles plane-wave ultrasoft pseudopotential method, the un-doped and the In-N heavily co-doped Zn1-xInxO1-yNy (x= 0.0625, y=0.125) in different orientations have been set up, and band structures and density of states have been calculated respectively. The calculated results show that the In-N atoms along the c-axis orientation has the advantages of high stability over those in the vertical c-axis direction, the band gap is narrower, the effective mass is smaller, the mobility is greater, and the hole concentration is higher, so that the conductivity of ZnO is higher in the In-N heavily co-doped materials. We believe that these results may be helpful to the design and preparation of the conductivity of In-N heavily co-doped ZnO.-
Keywords:
- In-N high codoped ZnO /
- conductivity /
- first-principles
[1] Bae S Y, Na C W, Kang J H, Park J 2005 J Phys. Chem. B 109 2526
[2] Badeker K 1907 Ann. Phys. (LeiPzig) 22 749
[3] GLima D, Kim D H, Kim J K, Kwon O, Yang K J, Park K I, Kim B S, Park S M W, Kwak D J 2006 SuPerlattice Microst 39 107
[4] Hao X T, Ma J, Zhang D H, Yang Y G, Ma H L, Cheng C F, Liu X D 2002 Mat. Sei. Eng. B 90 50
[5] Hao X T, Tan L W, Ong K S, Zhu F R 2006 J. Cryst. Growth 287 44
[6] Bian J M, Li X M, Chen L D, Yao Q 2004 Chem. Phys. Lett. 393 256
[7] Chen L L, Lu J G, Ye Z Z, Lin Y M, Zhao B H, Ye Y M, Li J S, Zhu L P 2005 App. Phys. Lett. 87 252106
[8] Yuan N Y, Fan L N, Li J H, Wang X Q 2007 App. Surf. Sci. 253 4990
[9] Chen L L, Ye Z Z, Lu J G, Chu P K 2006 App. Phys. Lett. 89 252113
[10] Zhao J L, Li X M, Krtschil A, Krost A, Yu W D, Zhang Y W, Gu Y F, Gao X D 2007 App. Phys. Lett. 90 062118
[11] Chen K, Fan G H, Zhang Y, Ding S F 2008 Acta Phys. Sin. 57 3138 (in Chinese) [陈琨, 范广涵, 章勇, 丁少锋 2008 57 3138]
[12] Yamamoto T, Yoshida H K 1999 Jpn. J. Appl. Phys. 38 L166
[13] Li P, Deng S H, Zhang L, Yu J Y, Liu G H 2010 Chin. Phys. B 19 117102
[14] Mapa M, Sivaranjani K, Bhange D S, Saha B, Chakraborty P, Viswanath A K, Gopinath C S 2010 Chem. Mater. 22 565
[15] Roth A P, Webb J B, Williams D F 1981 Solid State Commun. 39 1269
[16] Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203
[17] Zhao J L, Li X M, Krtschil A, Krost A, Yu W D, Zhang Y W, Gu Y F, Gao X D 2007 App. Phys. Lett. 90 062118
[18] Zhao H F, Cao Q X, Li J T 2008 Acta Phys. Sin. 57 5828 (in Chinese) [赵慧芳, 曹全喜, 李建涛 2008 57 5828]
[19] Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203
[20] Zhang J K, Deng S H, Jin H, Liu R L 2007 Acta Phys. Sin. 56 5371 (in Chinese)[张金奎, 邓胜华, 金慧, 刘悦林. 2007 56 5371]
[21] Schleife A, Fuchs F, Furthmller J 2006 J. Phys. Rev. B 73 245212
[22] Zhou C, Kang J 2004 13thProceedings of the International Conference on Semiconducting and Insulating Materials, Beijing China, September 20-25, 2004 pp81-84
-
[1] Bae S Y, Na C W, Kang J H, Park J 2005 J Phys. Chem. B 109 2526
[2] Badeker K 1907 Ann. Phys. (LeiPzig) 22 749
[3] GLima D, Kim D H, Kim J K, Kwon O, Yang K J, Park K I, Kim B S, Park S M W, Kwak D J 2006 SuPerlattice Microst 39 107
[4] Hao X T, Ma J, Zhang D H, Yang Y G, Ma H L, Cheng C F, Liu X D 2002 Mat. Sei. Eng. B 90 50
[5] Hao X T, Tan L W, Ong K S, Zhu F R 2006 J. Cryst. Growth 287 44
[6] Bian J M, Li X M, Chen L D, Yao Q 2004 Chem. Phys. Lett. 393 256
[7] Chen L L, Lu J G, Ye Z Z, Lin Y M, Zhao B H, Ye Y M, Li J S, Zhu L P 2005 App. Phys. Lett. 87 252106
[8] Yuan N Y, Fan L N, Li J H, Wang X Q 2007 App. Surf. Sci. 253 4990
[9] Chen L L, Ye Z Z, Lu J G, Chu P K 2006 App. Phys. Lett. 89 252113
[10] Zhao J L, Li X M, Krtschil A, Krost A, Yu W D, Zhang Y W, Gu Y F, Gao X D 2007 App. Phys. Lett. 90 062118
[11] Chen K, Fan G H, Zhang Y, Ding S F 2008 Acta Phys. Sin. 57 3138 (in Chinese) [陈琨, 范广涵, 章勇, 丁少锋 2008 57 3138]
[12] Yamamoto T, Yoshida H K 1999 Jpn. J. Appl. Phys. 38 L166
[13] Li P, Deng S H, Zhang L, Yu J Y, Liu G H 2010 Chin. Phys. B 19 117102
[14] Mapa M, Sivaranjani K, Bhange D S, Saha B, Chakraborty P, Viswanath A K, Gopinath C S 2010 Chem. Mater. 22 565
[15] Roth A P, Webb J B, Williams D F 1981 Solid State Commun. 39 1269
[16] Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203
[17] Zhao J L, Li X M, Krtschil A, Krost A, Yu W D, Zhang Y W, Gu Y F, Gao X D 2007 App. Phys. Lett. 90 062118
[18] Zhao H F, Cao Q X, Li J T 2008 Acta Phys. Sin. 57 5828 (in Chinese) [赵慧芳, 曹全喜, 李建涛 2008 57 5828]
[19] Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203
[20] Zhang J K, Deng S H, Jin H, Liu R L 2007 Acta Phys. Sin. 56 5371 (in Chinese)[张金奎, 邓胜华, 金慧, 刘悦林. 2007 56 5371]
[21] Schleife A, Fuchs F, Furthmller J 2006 J. Phys. Rev. B 73 245212
[22] Zhou C, Kang J 2004 13thProceedings of the International Conference on Semiconducting and Insulating Materials, Beijing China, September 20-25, 2004 pp81-84
计量
- 文章访问数: 5629
- PDF下载量: 305
- 被引次数: 0