搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类两自由度参激系统在常数激励下的响应研究

侯磊 陈予恕 李忠刚

引用本文:
Citation:

一类两自由度参激系统在常数激励下的响应研究

侯磊, 陈予恕, 李忠刚

Constant-excitation caused response in a class of parametrically excited systems with two degrees of freedom

Hou Lei, Chen Yu-Shu, Li Zhong-Gang
PDF
导出引用
  • 本文探讨常数激励对参激系统共振响应的影响. 以机动飞行的裂纹转子系统为例,建立一个两自由度的振动方程,其中裂纹的呼吸行为构成参数激励,机动飞行引起的机动载荷简化为常数激励,并假设转子为平衡转子,不考虑偏心激励的影响. 采用谐波平衡法求解振动方程,得到各次谐波响应与转速及常数激励的关系式,从而分析系统的共振响应. 结果表明,常数激励对系统的参激主共振及超谐共振响应起决定性作用,这符合普通裂纹转子系统的重力占优理论,同时,系统各次谐波响应的幅值随常数激励的增加而增大,常数激励的作用方向对参激主共振响应的幅值影响较大,但对参激超谐共振响应的幅值影响很小. 这说明常数激励能起到放大裂纹转子系统超谐共振响应的作用,不利于系统的平稳运行,但从另一角度考虑,常数激励可用于裂纹故障的早期检测.
    This paper focuses on the response in parametrically excited systems caused by constant excitation. Taking a maneuvering cracked rotor system as an example, we formulate the vibration equations with two degrees of freedom, in which the breathing of the crack constitutes parametric excitation, and the maneuver load of the maneuvering rotor is simplified as a constant excitation, and it is supposed that the rotor system is balanced without the consideration of eccentricity. By solving the equations with harmonic balance method, each order of harmonic components related with the rotating speed and the constant excitation is derived to analyze the corresponding resonance of the system. Results show that the constant excitation plays a decisive role in the parametrically excited primary and super-harmonic resonances of the system that agrees with the gravity dominance in common cracked rotor systems without maneuver load. And the stronger the constant excitation, the greater the resonances. Moreover, the orientation of the constant excitation makes a great impact on the parametrically excited primary resonance, but does not have a significant effect on the parametrically excited super-harmonic resonances. Results implies that constant excitation may increase the parametrically excited super-harmonic resonances of the cracked rotor systems, which is disadvantageous to the operating of the system. From another point of view, however, constant excitation can be used for early detection of crack faults in rotor systems.
    • 基金项目: 国家自然科学基金(批准号:10632040,11302058)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10632040, 11302058).
    [1]

    Ji J C, Chen Y S 1997 J. Vib. Eng. 10 491 (in Chinese)[季进臣, 陈予恕 1997 振动工程学报 10 491]

    [2]

    Xiao X W, Xiao G H, Yang S Z 2002 J. Vib. Eng. 15 315 (in Chinese) [肖锡武, 肖光华, 杨叔子 2002 振动工程学报 15 315]

    [3]

    Ying Z G, Chen Z H, Ni Y Q, Gao Z M 2007 Chinese J. Comput. Mech. 24 678 (in Chinese) [应祖光, 陈昭晖, 倪一清, 高赞明 2007 计算力学学报 24 678]

    [4]

    Wei K X, Meng G 2008 Chinese J. Theor. Appl. Mech. 40 273 (in Chinese) [魏克湘, 孟光 2008 力学学报 40 273]

    [5]

    Shi P M, Li J Z, Liu B, Han D Y 2011 Acta Phys. Sin. 60 094501 (in Chinese) [时培明, 李纪召, 刘彬, 韩东颖 2011 60 094501]

    [6]

    Zhu W Q 1990 Appl. Math. Mech. 11 155 (in Chinese) [朱位秋 1990 应用数学和力学 11 155]

    [7]

    Xie W X, Xu W, Lei Y M, Cai L 2005 Acta Phys. Sin. 54 1105 (in Chinese)[谢文贤, 徐伟, 雷佑铭, 蔡力 2005 54 1105]

    [8]

    Niu Y J, Xu W, Rong H W, Wang L, Feng J Q 2009 Acta Phys. Sin. 58 2983 (in Chinese) [牛玉俊, 徐伟, 戎海武, 王亮, 冯进钤 2009 58 2983]

    [9]

    Tu Z, Peng H, Wang F, Ma H 2013 Acta Phys. Sin. 62 030502 (in Chinese) [屠浙, 彭皓, 王飞, 马洪 2013 62 030502]

    [10]

    Zhang Y Q, Chen J J, Tang L D, Lin L G 2009 J. Mech. Strength 31 871 (in Chinese) [张耀强, 陈建军, 唐六丁, 林立广 2009 机械强度 31 871]

    [11]

    Chen G 2007 China Mech. Eng. 18 2773 (in Chinese)[陈果 2007 中国机械工程 18 2773]

    [12]

    Bai C Q, Xu Q Y, Zhang X L 2006 Appl. Math. Mech. 27 159 (in Chinese)[白长青, 许庆余, 张小龙 2006 应用数学和力学 27 159]

    [13]

    Yang J D, Xu P M, Wen B C 2002 Acta Mech. Solida Sin. 23 115 (in Chinese)[杨积东, 徐培民, 闻邦椿 2002 固体力学学报 23 115]

    [14]

    Yang J D, Xu P M, Wen B C 2002 Chinese J. Appl. Mech. 19 10 (in Chinese)[杨积东, 徐培民, 闻邦椿 2002 应用力学学报 19 10]

    [15]

    Leng X L, Meng G, Zhang T, Fang T 2006 J. Vib. Eng. 19 212 (in Chinese)[冷小磊, 孟光, 张韬, 方同 2006 振动工程学报 19 212]

    [16]

    Lin F S, Meng G 2002 J. Mech. Strength 24 320 (in Chinese)[林富生, 孟光 2002 机械强度 24 320]

    [17]

    Zhu C S, Chen Y J 2006 Acta Aeronaut. Astronaut. Sin. 27 835 (in Chinese) [祝长生, 陈拥军 2006 航空学报 27 835]

    [18]

    Wei H T, Fan X M 2001 Tenth Conference of the structural strength and vibration of aero-engine Anhui, China, October 1, 2000 p315 (in Chinese) [魏海涛, 范晓明 2001中国航空学会第十届航空发动机结构强度与振动会议论文集 2000 p315]

    [19]

    Xu M, Liao M F, Liu Q Z 2002 J. Aerospace Power 17 105 (in Chinese) [徐敏, 廖明夫, 刘启洲 2002 航空动力学报 17 105]

    [20]

    Yang Y F, Ren X M, Qin W Y 2007 J. Aerospace Power 22 1007 (in Chinese) [杨永锋, 任兴民, 秦卫阳 2007 航空动力学报 22 1007]

    [21]

    Yu Y B 2009 Master Thesis (Xi'an: Xi'an Technological University) (in Chinese) [于渊博 2009 硕士学位论文(西安: 西安工业大学)]

    [22]

    Hou L, Chen Y S, Cao Q J 2014 Commun. Nonlinear Sci. Numer. Simul. 19 286

    [23]

    Hou L, Chen Y S 2014 Sci. China Technol. Sc. 57 203

  • [1]

    Ji J C, Chen Y S 1997 J. Vib. Eng. 10 491 (in Chinese)[季进臣, 陈予恕 1997 振动工程学报 10 491]

    [2]

    Xiao X W, Xiao G H, Yang S Z 2002 J. Vib. Eng. 15 315 (in Chinese) [肖锡武, 肖光华, 杨叔子 2002 振动工程学报 15 315]

    [3]

    Ying Z G, Chen Z H, Ni Y Q, Gao Z M 2007 Chinese J. Comput. Mech. 24 678 (in Chinese) [应祖光, 陈昭晖, 倪一清, 高赞明 2007 计算力学学报 24 678]

    [4]

    Wei K X, Meng G 2008 Chinese J. Theor. Appl. Mech. 40 273 (in Chinese) [魏克湘, 孟光 2008 力学学报 40 273]

    [5]

    Shi P M, Li J Z, Liu B, Han D Y 2011 Acta Phys. Sin. 60 094501 (in Chinese) [时培明, 李纪召, 刘彬, 韩东颖 2011 60 094501]

    [6]

    Zhu W Q 1990 Appl. Math. Mech. 11 155 (in Chinese) [朱位秋 1990 应用数学和力学 11 155]

    [7]

    Xie W X, Xu W, Lei Y M, Cai L 2005 Acta Phys. Sin. 54 1105 (in Chinese)[谢文贤, 徐伟, 雷佑铭, 蔡力 2005 54 1105]

    [8]

    Niu Y J, Xu W, Rong H W, Wang L, Feng J Q 2009 Acta Phys. Sin. 58 2983 (in Chinese) [牛玉俊, 徐伟, 戎海武, 王亮, 冯进钤 2009 58 2983]

    [9]

    Tu Z, Peng H, Wang F, Ma H 2013 Acta Phys. Sin. 62 030502 (in Chinese) [屠浙, 彭皓, 王飞, 马洪 2013 62 030502]

    [10]

    Zhang Y Q, Chen J J, Tang L D, Lin L G 2009 J. Mech. Strength 31 871 (in Chinese) [张耀强, 陈建军, 唐六丁, 林立广 2009 机械强度 31 871]

    [11]

    Chen G 2007 China Mech. Eng. 18 2773 (in Chinese)[陈果 2007 中国机械工程 18 2773]

    [12]

    Bai C Q, Xu Q Y, Zhang X L 2006 Appl. Math. Mech. 27 159 (in Chinese)[白长青, 许庆余, 张小龙 2006 应用数学和力学 27 159]

    [13]

    Yang J D, Xu P M, Wen B C 2002 Acta Mech. Solida Sin. 23 115 (in Chinese)[杨积东, 徐培民, 闻邦椿 2002 固体力学学报 23 115]

    [14]

    Yang J D, Xu P M, Wen B C 2002 Chinese J. Appl. Mech. 19 10 (in Chinese)[杨积东, 徐培民, 闻邦椿 2002 应用力学学报 19 10]

    [15]

    Leng X L, Meng G, Zhang T, Fang T 2006 J. Vib. Eng. 19 212 (in Chinese)[冷小磊, 孟光, 张韬, 方同 2006 振动工程学报 19 212]

    [16]

    Lin F S, Meng G 2002 J. Mech. Strength 24 320 (in Chinese)[林富生, 孟光 2002 机械强度 24 320]

    [17]

    Zhu C S, Chen Y J 2006 Acta Aeronaut. Astronaut. Sin. 27 835 (in Chinese) [祝长生, 陈拥军 2006 航空学报 27 835]

    [18]

    Wei H T, Fan X M 2001 Tenth Conference of the structural strength and vibration of aero-engine Anhui, China, October 1, 2000 p315 (in Chinese) [魏海涛, 范晓明 2001中国航空学会第十届航空发动机结构强度与振动会议论文集 2000 p315]

    [19]

    Xu M, Liao M F, Liu Q Z 2002 J. Aerospace Power 17 105 (in Chinese) [徐敏, 廖明夫, 刘启洲 2002 航空动力学报 17 105]

    [20]

    Yang Y F, Ren X M, Qin W Y 2007 J. Aerospace Power 22 1007 (in Chinese) [杨永锋, 任兴民, 秦卫阳 2007 航空动力学报 22 1007]

    [21]

    Yu Y B 2009 Master Thesis (Xi'an: Xi'an Technological University) (in Chinese) [于渊博 2009 硕士学位论文(西安: 西安工业大学)]

    [22]

    Hou L, Chen Y S, Cao Q J 2014 Commun. Nonlinear Sci. Numer. Simul. 19 286

    [23]

    Hou L, Chen Y S 2014 Sci. China Technol. Sc. 57 203

  • [1] 方杰, 韩冬梅, 刘辉, 刘昊迪, 郑泰玉. 非线性两模玻色子系统的Majorana表象.  , 2017, 66(16): 160302. doi: 10.7498/aps.66.160302
    [2] 寇添, 于雷, 周中良, 王海晏, 阮铖巍, 刘宏强. 机载光电系统探测空中机动目标的光谱辐射特征研究.  , 2017, 66(4): 049501. doi: 10.7498/aps.66.049501
    [3] 徐伟, 杨贵东, 岳晓乐. 随机参激下Duffing-Rayleigh碰撞振动系统的P-分岔分析.  , 2016, 65(21): 210501. doi: 10.7498/aps.65.210501
    [4] 伍新, 文桂林, 徐慧东, 何莉萍. 三自由度含间隙碰撞振动系统Neimark-Sacker分岔的反控制.  , 2015, 64(20): 200504. doi: 10.7498/aps.64.200504
    [5] 范榕华, 郭邦红, 郭建军, 张程贤, 张文杰, 杜戈. 基于轨道角动量的多自由度W态纠缠系统.  , 2015, 64(14): 140301. doi: 10.7498/aps.64.140301
    [6] 楼智美. 两自由度带电耦合振子系统的守恒量与近似解.  , 2014, 63(9): 090202. doi: 10.7498/aps.63.090202
    [7] 楼智美. 两自由度弱非线性耦合系统的一阶近似Lie对称性与近似守恒量.  , 2013, 62(22): 220202. doi: 10.7498/aps.62.220202
    [8] 谢文贤, 蔡力, 岳晓乐, 雷佑铭, 徐伟. 两种群随机动力系统的信息熵和动力学研究.  , 2012, 61(17): 170509. doi: 10.7498/aps.61.170509
    [9] 孟建宇, 王培月, 冯伟, 杨国建, 李新奇. 关于多比特电路量子动力学系统中光子自由度的消除方案研究.  , 2012, 61(24): 240305. doi: 10.7498/aps.61.240305
    [10] 孟建宇, 王培月, 冯伟, 杨国建, 李新奇. 关于电路量子电动力学系统中光子自由度的消除方案.  , 2012, 61(18): 180302. doi: 10.7498/aps.61.180302
    [11] 李胜波, 闫辉, 姜洪源, 陈亮. 应用于高速转子系统的金属橡胶阻尼环动力特性分析.  , 2012, 61(1): 010702. doi: 10.7498/aps.61.010702
    [12] 楼智美. 三自由度二阶非线性耦合动力学系统守恒量的扩展Prelle-Singer求法.  , 2010, 59(6): 3633-3638. doi: 10.7498/aps.59.3633
    [13] 周颖, 臧强. 多输入多输出不确定非线性系统的输出反馈自适应机动控制.  , 2009, 58(11): 7565-7572. doi: 10.7498/aps.58.7565
    [14] 戎海武, 王向东, 徐伟, 方同. 窄带随机噪声作用下单自由度非线性干摩擦系统的响应.  , 2009, 58(11): 7558-7564. doi: 10.7498/aps.58.7558
    [15] 王 亮, 徐 伟, 李 颖. 随机激励下二自由度碰撞振动系统的响应分析.  , 2008, 57(10): 6169-6173. doi: 10.7498/aps.57.6169
    [16] 楼智美. 一类多自由度线性耦合系统的对称性与守恒量研究.  , 2007, 56(5): 2475-2478. doi: 10.7498/aps.56.2475
    [17] 牛培峰, 张 君, 关新平. 基于遗传算法的混沌系统二自由度比例-积分-微分控制研究.  , 2007, 56(7): 3759-3765. doi: 10.7498/aps.56.3759
    [18] 谢文贤, 徐 伟, 雷佑铭, 蔡 力. 随机参激和外激联合作用下非线性动力系统的路径积分解.  , 2005, 54(3): 1105-1112. doi: 10.7498/aps.54.1105
    [19] 肖方红, 闫桂荣, 韩雨航. 双稳随机动力系统信号调制噪声效应的数值分析.  , 2004, 53(2): 396-400. doi: 10.7498/aps.53.396
    [20] 张宗燧. 量子系统的Ergodlc定理.  , 1958, 14(5): 400-404. doi: 10.7498/aps.14.400
计量
  • 文章访问数:  5752
  • PDF下载量:  479
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-09
  • 修回日期:  2014-01-29
  • 刊出日期:  2014-07-05

/

返回文章
返回
Baidu
map