搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑死区非线性的L滤波单相并网逆变器的精确离散迭代模型及其分岔行为

谢瑞良 郝翔 王跃 杨旭 黄浪 王超 杨月红

引用本文:
Citation:

考虑死区非线性的L滤波单相并网逆变器的精确离散迭代模型及其分岔行为

谢瑞良, 郝翔, 王跃, 杨旭, 黄浪, 王超, 杨月红

An exact discrete-time model and the bifurcation performance of single phase grid-connected inverter with L-filter considering dead-time nonlinearity

Xie Rui-Liang, Hao Xiang, Wang Yue, Yang Xu, Huang Lang, Wang Chao, Yang Yue-Hong
PDF
导出引用
  • 并网逆变器系统作为一个时变非线性系统,具有复杂的动力学行为,而死区非线性的引入使系统的非线性行为更为复杂和难以预测. 本文以考虑死区非线性的L滤波单相并网逆变器为研究对象,首先观察不同死区时间下系统的输出电流波形,发现在控制器参数固定的情况下,随着死区时间的增加,系统会出现分岔现象;其次,根据死区非线性特性及其引起的电流过零钳位现象,分多种情况全面地建立了精确完整的离散迭代模型,并在此基础上对系统的分岔行为进行理论分析. 此外,系统的稳定性判定具有重要的工程指导意义,由于死区非线性的引入,常规解析方法使用困难,而图解法的精度又难以令人满意,因此提出了一种基于等效占空比的稳定性判断方法,可以精确地判定系统的稳定边界,为控制器参数设计和死区时间设计提供了可靠依据.
    Grid-connected inverter system is recognized as a time-varying nonlinear system, and it has complex nonlinear behaviors in practice. However, the introduction of dead-time nonlinearity can make the nonlinear behaviors of the system more complex and harder to predict. In this paper, the proportional control single-phase grid-connected inverter with L-filter considering dead-time nonlinearity is investigated. The observation of current waveforms under fixed controller parameter and different dead-time parameters shows that the bifurcation phenomenon occurs with the increase of dead-time. According to the features of dead-time nonlinearity and the zero current clamping phenomenon caused by dead-time, an exact and complete discrete-time model is established by comprehensively considering the system from various aspects. And the theoretical analysis of bifurcation behaviors of system is carried out based on the proposed model. Moreover, the stability judgment has engineering significance. However, with the consideration of dead-time nonlinearity, analytical methods are difficult to use and the graphic methods do not have satisfactory accuracy. Therefore, a stability criterion based on equivalent duty ratio is proposed in this paper, which can accurately judge the stability boundary and provide reliable references for the parameter design of controller and dead-time.
    • 基金项目: 国家自然科学基金(批准号:51177129)和国家高技术研究发展计划(批准号:2011AA05A305)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51177129) and the National High Technology Research and Development Program of China (Grant No. 2011AA05A305).
    [1]

    Ma X K, Li M, Dai D, Zhang H, Zou J L 2006 Trans. CES 2 1 (in Chinese) [马西奎, 李明, 戴栋, 张浩, 邹建龙 2006 电工技术学报 2 1]

    [2]

    Zhang B, Qu Y 2003 Proc. CSEE 23 99 (in Chinese) [张波, 曲颖 2003 电机工程学报 23 99]

    [3]

    Luo X S, Wang B H, Chen G R, Quan H J, Fang J Q, Zou Y L, Jiang P Q 2003 Acta Phys. Sin. 52 12 (in Chinese) [罗晓曙, 汪秉宏, 陈关荣, 全宏俊, 方锦清, 邹艳丽, 蒋品群 2003 52 12]

    [4]

    Aroudi A, Debbat M, Giral R, Oliver G, Benadero L, Toribio E 2005 Int. J. Bifurc. Chaos 15 1549

    [5]

    Liu W Z, Zhang H, Ma X K 2005 Proc. CSEE 25 43 (in Chinese) [刘伟增, 张浩, 马西奎 2005 电机工程学报 25 43]

    [6]

    Ma X K, Liu W Z, Zhang H 2005 Proc. CSEE 25 61 (in Chinese) [马西奎, 刘伟增, 张浩 2005 电机工程学报 25 61]

    [7]

    Dai D, Zhang B, Li S N, Ma X K 2008 Trans. CES 23 65 (in Chinese) [戴栋, 张波, 李胜男, 马西奎 2008 电工技术学报 23 65]

    [8]

    Iu H H C, Zhou Y, Tse C K 2003 Int. J. Circ. Theor. Appl. 31 611

    [9]

    Robert B, Feki M, Iu H H C 2006 Int. J. Bifurc. Chaos 16 113

    [10]

    Wang X M, Zhang B, Qiu D Y 2009 Acta Phys. Sin. 58 2248 (in Chinese) [王学梅, 张波, 丘东元 2009 58 2248]

    [11]

    Lei B, Xiao G C, Wu X L, Qi Y R 2011 Acta Phys. Sin. 60 090501 (in Chinese) [雷博, 肖国春, 吴旋律, 齐元瑞 2011 60 090501]

    [12]

    Hao X, Xie R L, Yang X, Liu T, Huang L 2013 Acta Phys. Sin. 62 200503 (in Chinese) [郝翔, 谢瑞良, 杨旭, 刘韬, 黄浪 2013 62 200503]

    [13]

    Hao X, Liu T, Yang X, Huang L 2012 Proc. IEEE IPEMC Harbin, China, June 2-5, 2012 p831

    [14]

    Liu T, Hao X Yang X Liu J, Zhang B, Huang L 2012 Proc. IEEE IPEMC Harbin, China, June 2-5, 2012 p626

    [15]

    Liu T, Hao X, Yang X, Zhao M, Huang Q, Huang L 2012 Proc IEEE IPEMC Harbin, China, June 2-5, 2012 p335

    [16]

    Hu J, Shang L, He Y, Zhu Z Q 2011 IEEE Trans. Power Electron. 26 210

    [17]

    Hao X, Yang X, Liu T, Huang L, Chen W 2013 IEEE Trans. Power Electron. 28 793

    [18]

    Yu D C, Wu A G, Yang C P 2005 Chin. Phys. B 14 5

    [19]

    Chen D Y, Liu Y X, Ma X Y, Zhang R F 2011 Chin. Phys. B 20 120506

    [20]

    Mohammad P A, Hassan F 2012 Chin. Phys. B 21 060506

    [21]

    Kukrer O, Komurcugil H, Doganalp A 2009 IEEE Trans. Ind. Electron. 56 3477

    [22]

    Herran M A, Fischer J R, Gonzalez S A, Judewicz M G, Carrica D O 2013 IEEE Trans. Power Electron. 28 2816

    [23]

    Summers T J, Betz R E 2004 IEEE Trans. Ind. Appl. 40 935

    [24]

    Cichowski A, Nieznanski J 2005 IEEE Power Electron. Lett. 3 72

  • [1]

    Ma X K, Li M, Dai D, Zhang H, Zou J L 2006 Trans. CES 2 1 (in Chinese) [马西奎, 李明, 戴栋, 张浩, 邹建龙 2006 电工技术学报 2 1]

    [2]

    Zhang B, Qu Y 2003 Proc. CSEE 23 99 (in Chinese) [张波, 曲颖 2003 电机工程学报 23 99]

    [3]

    Luo X S, Wang B H, Chen G R, Quan H J, Fang J Q, Zou Y L, Jiang P Q 2003 Acta Phys. Sin. 52 12 (in Chinese) [罗晓曙, 汪秉宏, 陈关荣, 全宏俊, 方锦清, 邹艳丽, 蒋品群 2003 52 12]

    [4]

    Aroudi A, Debbat M, Giral R, Oliver G, Benadero L, Toribio E 2005 Int. J. Bifurc. Chaos 15 1549

    [5]

    Liu W Z, Zhang H, Ma X K 2005 Proc. CSEE 25 43 (in Chinese) [刘伟增, 张浩, 马西奎 2005 电机工程学报 25 43]

    [6]

    Ma X K, Liu W Z, Zhang H 2005 Proc. CSEE 25 61 (in Chinese) [马西奎, 刘伟增, 张浩 2005 电机工程学报 25 61]

    [7]

    Dai D, Zhang B, Li S N, Ma X K 2008 Trans. CES 23 65 (in Chinese) [戴栋, 张波, 李胜男, 马西奎 2008 电工技术学报 23 65]

    [8]

    Iu H H C, Zhou Y, Tse C K 2003 Int. J. Circ. Theor. Appl. 31 611

    [9]

    Robert B, Feki M, Iu H H C 2006 Int. J. Bifurc. Chaos 16 113

    [10]

    Wang X M, Zhang B, Qiu D Y 2009 Acta Phys. Sin. 58 2248 (in Chinese) [王学梅, 张波, 丘东元 2009 58 2248]

    [11]

    Lei B, Xiao G C, Wu X L, Qi Y R 2011 Acta Phys. Sin. 60 090501 (in Chinese) [雷博, 肖国春, 吴旋律, 齐元瑞 2011 60 090501]

    [12]

    Hao X, Xie R L, Yang X, Liu T, Huang L 2013 Acta Phys. Sin. 62 200503 (in Chinese) [郝翔, 谢瑞良, 杨旭, 刘韬, 黄浪 2013 62 200503]

    [13]

    Hao X, Liu T, Yang X, Huang L 2012 Proc. IEEE IPEMC Harbin, China, June 2-5, 2012 p831

    [14]

    Liu T, Hao X Yang X Liu J, Zhang B, Huang L 2012 Proc. IEEE IPEMC Harbin, China, June 2-5, 2012 p626

    [15]

    Liu T, Hao X, Yang X, Zhao M, Huang Q, Huang L 2012 Proc IEEE IPEMC Harbin, China, June 2-5, 2012 p335

    [16]

    Hu J, Shang L, He Y, Zhu Z Q 2011 IEEE Trans. Power Electron. 26 210

    [17]

    Hao X, Yang X, Liu T, Huang L, Chen W 2013 IEEE Trans. Power Electron. 28 793

    [18]

    Yu D C, Wu A G, Yang C P 2005 Chin. Phys. B 14 5

    [19]

    Chen D Y, Liu Y X, Ma X Y, Zhang R F 2011 Chin. Phys. B 20 120506

    [20]

    Mohammad P A, Hassan F 2012 Chin. Phys. B 21 060506

    [21]

    Kukrer O, Komurcugil H, Doganalp A 2009 IEEE Trans. Ind. Electron. 56 3477

    [22]

    Herran M A, Fischer J R, Gonzalez S A, Judewicz M G, Carrica D O 2013 IEEE Trans. Power Electron. 28 2816

    [23]

    Summers T J, Betz R E 2004 IEEE Trans. Ind. Appl. 40 935

    [24]

    Cichowski A, Nieznanski J 2005 IEEE Power Electron. Lett. 3 72

  • [1] 曹娜, 陈时, 曹辉, 王成会, 刘航. 非线性波动方程的新数值迭代方法.  , 2020, 69(3): 034301. doi: 10.7498/aps.69.20191440
    [2] 廖志贤, 罗晓曙, 黄国现. 两级式光伏并网逆变器建模与非线性动力学行为研究.  , 2015, 64(13): 130503. doi: 10.7498/aps.64.130503
    [3] 刘洪臣, 苏振霞. 双降压式全桥逆变器非线性现象的研究.  , 2014, 63(1): 010505. doi: 10.7498/aps.63.010505
    [4] 李群宏, 闫玉龙, 韦丽梅, 秦志英. 非线性传送带系统的复杂分岔.  , 2013, 62(12): 120505. doi: 10.7498/aps.62.120505
    [5] 刘洪臣, 李飞, 杨爽. 基于周期性扩频的单相H桥逆变器非线性现象的研究.  , 2013, 62(11): 110504. doi: 10.7498/aps.62.110504
    [6] 吴立锋, 关永, 刘勇. 分段线性电路切换系统的复杂行为及非光滑分岔机理.  , 2013, 62(11): 110510. doi: 10.7498/aps.62.110510
    [7] 刘洪臣, 王云, 苏振霞. 单相三电平H桥逆变器分岔现象的研究.  , 2013, 62(24): 240506. doi: 10.7498/aps.62.240506
    [8] 郝翔, 谢瑞良, 杨旭, 刘韬, 黄浪. 基于脉冲宽度调制的滑模变结构控制的一阶H桥逆变器的分岔和混沌行为研究.  , 2013, 62(20): 200503. doi: 10.7498/aps.62.200503
    [9] 孟宗, 付立元, 宋明厚. 一类非线性相对转动系统的组合谐波分岔行为研究.  , 2013, 62(5): 054501. doi: 10.7498/aps.62.054501
    [10] 刘洪臣, 杨爽. 单相H桥逆变器单极性正弦脉宽调制下的分岔及混沌行为研究.  , 2013, 62(21): 210502. doi: 10.7498/aps.62.210502
    [11] 吴旋律, 肖国春, 雷博. 数字控制单相全桥电压型逆变电路的改进离散迭代模型.  , 2013, 62(5): 050503. doi: 10.7498/aps.62.050503
    [12] 曹小群, 张卫民, 宋君强, 朱小谦, 赵军. 非线性映射参数辨识的离散变分方法.  , 2012, 61(2): 020507. doi: 10.7498/aps.61.020507
    [13] 吴军科, 周雒维, 卢伟国. 电压型逆变器的通用分岔控制策略研究.  , 2012, 61(21): 210202. doi: 10.7498/aps.61.210202
    [14] 雷博, 肖国春, 吴旋律, 齐元瑞. 单相全桥DC-AC电压逆变电路数字控制中的振荡现象分析.  , 2011, 60(9): 090501. doi: 10.7498/aps.60.090501
    [15] 陈章耀, 毕勤胜. Jerk系统耦合的分岔和混沌行为.  , 2010, 59(11): 7669-7678. doi: 10.7498/aps.59.7669
    [16] 王学梅, 丘东元, 张波. H桥正弦逆变器的快变和慢变稳定性及混沌行为研究.  , 2009, 58(4): 2248-2254. doi: 10.7498/aps.58.2248
    [17] 陈 晶, 张天平, 闾立新. 具有死区非线性输入的一类不确定混沌系统的自适应控制.  , 2007, 56(2): 686-692. doi: 10.7498/aps.56.686
    [18] 罗晓曙, 陈关荣, 汪秉宏, 方锦清, 邹艳丽, 全宏俊. 状态反馈和参数调整控制离散非线性系统的倍周期分岔和混沌.  , 2003, 52(4): 790-794. doi: 10.7498/aps.52.790
    [19] 杨援, 戴建华, 张洪钧. 光学双稳态离散模型的动力学行为.  , 1994, 43(5): 699-706. doi: 10.7498/aps.43.699
    [20] 赵勇, 霍裕平. 非线性环形光学腔中分岔混沌的新行为.  , 1987, 36(7): 909-914. doi: 10.7498/aps.36.909
计量
  • 文章访问数:  5859
  • PDF下载量:  459
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-27
  • 修回日期:  2014-02-26
  • 刊出日期:  2014-06-05

/

返回文章
返回
Baidu
map