搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稍不均匀电场中低气压击穿的起始路径研究

于博 梁伟 焦蛟 康小录 赵青

引用本文:
Citation:

稍不均匀电场中低气压击穿的起始路径研究

于博, 梁伟, 焦蛟, 康小录, 赵青

Critical breakdown path under low-pressure and slightly uneven electric field gap

Yu Bo, Liang Wei, Jiao Jiao, Kang Xiao-Lu, Zhao Qing
PDF
HTML
导出引用
  • 稍不均匀电场间隙的起始击穿路径问题对于气体放电触发以及电极表面削蚀有重要意义. 为研究低气压击穿工况中起始路径的位置规律, 本文建立了一种基于蒙特卡罗碰撞模型与电子运动轨迹假设相结合的路径判断模型(determination of the critical path 模型, DCP模型), 并以2种电极装置的击穿试验来验证DCP模型的正确性. 通过负电极表面的痕迹捕捉和击穿电压的测量可以分别验证DCP模型对起始击穿路径和击穿电压的计算能力. 根据试验结果, 起始击穿路径在不同压强或流率下会发生转移, 且转移趋势与计算结果相符; 同时, DCP模型对击穿电压的计算误差不超过7.9%, 可初步验证DCP模型的计算精度. 在此基础上, 利用DCP模型对其他4种典型的电极装置进行数值计算, 发现全部击穿案例都存在一些共性: 随着间隙压强或流率的升高, 最小电压区域((pd) min过渡区)的起始路径转移频繁, 并伴随击穿电压上下波动, 近似持平, 且起始路径几乎都服从较长路径向较短路径的转移规律. 最后, 通过DCP模型的数值分析, 揭示了上述起始路径相关规律的内在机理.
    The determination of the critical breakdown path in slightly uneven electric field has played a significant role in gas discharge starting process and electrode surface erosion. In order to study the law of the critical path position in the low-pressure breakdown case, a new algorithm based on the Monte-Carlo collision model and the postulation of " forward-back trajectory for electrons” is established, namely the determination of the critical path(DCP) model. In the DCP model, some electric field lines among the electrodes are regarded as the potential breakdown paths, and the probability of the excitation and ionization collisions between the electrons and the neutrals can be obtained by the Monte-Carlo model. The most probable path to trigger the breakdown will be selected from among all the potential paths, namely the critical breakdown path, and the corresponding breakdown voltage of the critical path will be calculated. A breakdown test with two different electrode devices is performed to examine the accuracy of the DCP model: the critical path and breakdown voltage obtained by the DCP could be examined respectively by capturing the surface traces of negative electrode and measuring the breakdown voltage. According to the test results, the critical breakdown path can transit at different gap pressures or flow rates, and this observation is qualitatively consistent with the calculation results. Meanwhile, the relative error maximum of the breakdown voltage obtained by DCP is less than 7.9%. The accuracy of the DCP model partly depends on the background pressure, and the background pressure in the application case should be less than 103 Pa. Based on the DCP model, the numerical analyses of another four electrode devices are conducted to acquire the common law about the critical breakdown path. According to the calculation results, the transition zone has both a high frequency of critical path transition and a " fluctuant and similarly straight” breakdown voltage curve with the gap pressure or flow rate increasing, and the critical path transition direction follows the rule of " from longer paths to shorter paths”. Lastly, the inherent laws of those regulations about the critical path are revealed by the DCP model.
      通信作者: 赵青, zhaoq@uestc.edu.cn
      Corresponding author: Zhao Qing, zhaoq@uestc.edu.cn
    [1]

    Paschen F 1889 Wied. Annal. Phys. Chem. 37 69

    [2]

    Golden D E, Fisher L H 1965 Phys. Rev. 139 1452Google Scholar

    [3]

    Kagan Y M 1991 J. Phys. D: Appl. Phys. 24 882Google Scholar

    [4]

    Osmokrovic P, Loncar B, Gajic-Kvascev M 2004 IEEE Trans. Plasma Sci. 32 1849Google Scholar

    [5]

    Osmokrovic P, Vasic A 2005 IEEE Trans. Plasma Sci. 33 1672Google Scholar

    [6]

    Niemeyer L, Pietronero L, Wiesmann H J 1984 Phys. Rev. Lett. 52 1033Google Scholar

    [7]

    Wiesmann H J, Zeller H R 1986 J. Phys. D: Appl. Phys. 60 1770Google Scholar

    [8]

    Niemeyer L 1987 J. Phys. D: Appl. Phys. 20 897Google Scholar

    [9]

    Noskov M D, Kukhta V R, Lopatin V V 1995 J. Phys. D: Appl. Phys. 28 1187Google Scholar

    [10]

    Dulan A, Upul S A, Marcus B B, Vernon C 2015 J. Electrostat. 73 33Google Scholar

    [11]

    火元莲, 张广庶, 吕世华, 袁萍 2013 62 059201Google Scholar

    Huo Y L, Zhang G S, Lü S H, Yuan P 2013 Acta Phy. Sin. 62 059201Google Scholar

    [12]

    郑殿春, 丁宁, 沈湘东, 赵大伟, 郑秋平, 魏红庆 2016 65 024703Google Scholar

    Zheng D C, Ding N, Shen X D, Zhao D W, Zheng Q P, Wei H Q 2016 Acta Phy. Sin. 65 024703Google Scholar

    [13]

    Townsend J S 1925 J. Franklin Inst. 200 563Google Scholar

    [14]

    Mahalingam S, Nieter C, Loverich J, Smithe D, Stoltz P 2009 Open Plasma Phys. J. 2 63Google Scholar

    [15]

    Venkattraman A, Alexeenko A A 2012 P. Plasmas 19 123515Google Scholar

    [16]

    Shklyaev V A, Belomyttsev S Y, Ryzhov V V 2012 J. Appl. Phys. 112 113303Google Scholar

    [17]

    Macheret S O, Shneider M N 2013 Phys. Plasmas 20 101608Google Scholar

    [18]

    Szabo J J, Warner N, Martinez-Sanchez M 2014 J. Propul. Power 30 197Google Scholar

    [19]

    谢爱根, 张健, 刘斌, 王铁邦 2012 强激光与粒子束 24 481

    Xie A G, Zhang J, Liu B, Wang T B 2012 High Power Laser and Particle Beams 24 481

    [20]

    Huerta M, Ludeking L 2010 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orlando, USA, January 4-7, 2010 p1

    [21]

    武占成, 张希军, 胡有志 2012 气体放电 (北京: 国防工业出版社) 第69页

    Wu Z C, Zhang X J, Hu Y Z 2012 Gas Discharge (Beijing: National Defense Industry Press) p69 (in Chinese)

    [22]

    Daykin-Iliopoulos A, Gabriel S, Golosnoy I, Kubota K, Funaki I 2015 34th International Electric Propulsion Conference Hyogo-Kobe, Japan, July 4-10, 2015 p1

    [23]

    Zhao Y , Qing A , Meng Y , Song Z, Lin C 2018 Scientific Reports 8 1729

    [24]

    Zhao Y, Huang C, Qing A, Luo X 2017 IEEE Photonics Journal 9 1

  • 图 1  典型非平行电极间的计算节点划分示意图

    Fig. 1.  Schematic diagram of the mesh grid generation in nonparallel two-electrode gap

    图 2  间隙压强不均布时的${N_{\rm{n}}}$计算方法

    Fig. 2.  Computational method of the ${N_{\rm{n}}}$ in the gap of non-uniform pressure distribution

    图 3  DCP计算结果稳定性随N0的依变关系(a) n0 = 1; (b) n0 = 10; (c) n0 = 50; (d) n0 = 100; (e) n0 = 200; (f) n0 = 500 (case 1, 间隙压强60 Pa, 临界击穿电压345 V)

    Fig. 3.  The computational stability of DCP model as a function of N0: (a) n0 = 1; (b) n0 = 10; (c) n0 = 50; (d) n0 = 100; (e) n0 = 200; (f) n0 = 500 (An example of case 1, gap pressure: 60 Pa, critical breakdown voltage: 345 V )

    图 4  路径总电离次数的计算值随$\Delta U$变化的偏差 (a) No.1候选路径; (b) No.21候选路径

    Fig. 4.  The computational deviation of total ionization number in one path at different $\Delta U$: (a) Potential path of No.1; (b) potential path of No.21

    图 5  击穿试验系统布置

    Fig. 5.  A diagram of the test layout

    图 6  放电过程的VI-t曲线(数据来自case 1工况)

    Fig. 6.  VI-t curve of the discharge process in case 1

    图 7  圆片阶梯电极的结构及候选路径划分(f = 3.97)

    Fig. 7.  The geometry and potential path generation in the laddered plate electrode (f = 3.97)

    图 8  Case 1试验与计算结果对比(气体工质: Xe)

    Fig. 8.  The comparison of the calculation and test results in case 1 (working medium: Xe)

    图 9  MPDT电极的相关信息 (a)实物照片; (b)电极结构及候选路径划分(f = 2.47)

    Fig. 9.  The relevant information of the MPDT: (a) Physical photograph; (b) the electrode geometry and potential path generation

    图 10  Case 2试验与计算结果对比(气体工质: Ar)

    Fig. 10.  The comparison of the calculation and test results in case 2 (working medium: Ar)

    图 11  Case 3的计算输入条件及计算结果(气体工质: Xe) (a)电极结构及候选路径划分(f = 2.45); (b)V-p曲线的计算结果及起始路径分布

    Fig. 11.  The input conditions and calculation results in case 3 (working medium: Xe): (a) The electrode geometry and potential path generation; (b) the calculation results of the V-p curve and the critical path distribution

    图 12  Case 4的计算输入条件及计算结果(气体工质: Xe) (a)电极结构及候选路径划分(f = 3.76); (b)V-fr曲线的计算结果及起始路径分布

    Fig. 12.  The input conditions and calculation results in case 4(working medium: Xe): (a) The electrode geometry and potential path generation; (b) the calculation results of the V-p curve and the critical path distribution

    图 13  Case 5的计算输入条件及计算结果(气体工质: Ar): (a) 电极结构及候选路径划分(f = 3.43); (b) V-p曲线的计算结果及起始路径分布

    Fig. 13.  The input conditions and calculation results in case 5 (working medium: Ar): (a) The electrode geometry and potential path generation; (b) the calculation results of the V-p curve and the critical path distribution

    图 14  Case 6的计算输入条件及计算结果(气体工质: Xe) (a)电极结构及候选路径划分(f = 2.84); (b)V-p曲线的计算结果及起始路径分布

    Fig. 14.  The input conditions and calculation results in case 6(working medium: Xe): (a) The electrode geometry and potential path generation; (b) the calculation results of the V-p curve and the critical path distribution

    图 15  整个电极的V-p曲线形成原因(case 3)

    Fig. 15.  The formation reason of the entire V-p curve in the whole gap of case 3

    图 16  不同压强下电极间隙的电离碰撞次数分布(case 3) (a) p = 40 Pa; (b) p = 80 Pa

    Fig. 16.  The ionization collision number distribution at different gap pressures in case 3: (a) p = 40 Pa; (b) p = 80 Pa

    图 17  ${\sigma _T}\left({E_{{k},e}}\right)$, ${\sigma _{{\rm{ion}}}}\left({E_{{k},e}}\right)/{\sigma _T}\left({E_{{k},e}}\right)$${E_{{k},e}}$在不同压强、不同候选路径上的分布规律(case 3) (a)平均${\sigma _T}\left({E_{{k},e}}\right)$, p = 40 Pa; (b)平均${\sigma _T}\left({E_{{k},e}}\right)$, p = 80 Pa; (c)平均${\sigma _{{\rm{ion}}}}\left({E_{{k},e}}\right)/{\sigma _T}\left({E_{{k},e}}\right)$, p = 40 Pa; (d)平均${\sigma _{{\rm{ion}}}}\left({E_{{k},e}}\right)/{\sigma _T}\left({E_{{k},e}}\right)$, p = 80 Pa; (e)平均${E_{{k},e}}$, p = 40 Pa; (f)各节点的平均${E_{{k},e}}$, p = 80 Pa

    Fig. 17.  The distribution of ${\sigma _T}\left({E_{{k},e}}\right)$,${\sigma _{{\rm{ion}}}}\left({E_{{k},e}}\right)/{\sigma _T}\left({E_{{k},e}}\right)$ and ${E_{{k},e}}$ at different gap pressures and different potential paths in case 3: (a) The average ${\sigma _T}\left({E_{{k},e}}\right)$, p = 40 Pa; (b) the average ${\sigma _T}\left({E_{{k},e}}\right)$, p = 80 Pa; (c) the average ${\sigma _{{\rm{ion}}}}\left({E_{{k},e}}\right)/{\sigma _T}\left({E_{{k},e}}\right)$, p = 40 Pa; (d) the average ${\sigma _{{\rm{ion}}}}\left({E_{{k},e}}\right)/{\sigma _T}\left({E_{{k},e}}\right)$, p = 80 Pa; (e) the average ${E_{{k},e}}$, p = 40 Pa; (f) the average ${E_{{k},e}}$, p = 80 Pa

    图 18  不同压强下电极间隙的激发碰撞次数分布(case 3) (a) p = 40 Pa; b) p = 80 Pa

    Fig. 18.  The excitation collision number distribution at different gap pressures in case 3: (a) p = 40 Pa; (b) p = 80 Pa

    表 1  e-Xe的碰撞截面公式[18]

    Table 1.  The e-Xe collision cross-section[18].

    碰撞类型碰撞截面公式/m2
    弹性碰撞$1.699 \times {10^{ - 19}}$${E_{k,e}} \leqslant 0.159\; {\rm{ eV}}$
    $(0.076E_{k,e}^2 - 0.345E_{k,e}^{1.5} + 0.585{E_{k,e}} - 0.427E_{k,e}^{0.5} + 0.114)\times {10^{ - 17}}$$0.16\; {\rm{ eV}} < {E_{k,e}} \leqslant 2.8\; {\rm{ eV}}$
    $( - 0.002E_{k,e}^2 + 0.03E_{k,e}^{1.5} - 0.166{E_{k,e}} + 0.402E_{k,e}^{0.5} - 0.317)\times {10^{ - 17}}$$2.8\; {\rm{ eV}} < {E_{k,e}} \leqslant 24.7\; {\rm{ eV}}$
    $( - 0.0022E_{k,e}^{1.5} + 0.043{E_{k,e}} - 0.28567E_{k,e}^{0.5} + 0.6518)\times {10^{ - 17}}$$24.7\; {\rm{ eV}} < {E_{k,e}} \leqslant 50\; {\rm{ eV}}$
    $0.00064 \times {10^{ - 17}}$${E_{k,e}} > 50\; {\rm{ eV}}$
    激发碰撞$0.0$${E_{k,e}} \leqslant 8.4\; {\rm{ eV}}$
    $(0.002E_{k,e}^2 - 0.023E_{k,e}^{1.5} + 0.098{E_{k,e}} - 0.188E_{k,e}^{0.5} + 0.135)\times {10^{ - 16}}$$8.4\; {\rm{ eV}} < {E_{k,e}} \leqslant 11\; {\rm{ eV}}$
    $(0.0007E_{k,e}^2 - 0.012E_{k,e}^{1.5} + 0.08{E_{k,e}} - 0.23E_{k,e}^{0.5} + 0.23)\times {10^{ - 17}}$$11\; {\rm{ eV}} < {E_{k,e}} \leqslant 25\; {\rm{ eV}}$
    $\begin{gathered}(0.1 \times {10^{ - 6}}E_{k,e}^2 + 0.8 \times {10^{ - 5}}E_{k,e}^{1.5} - 0.0002{E_{k,e}} + 0.002E_{k,e}^{0.5} + 0.001)\hfill \\ \times {10^{ - 17}} \hfill \\ \end{gathered} $$25\; {\rm{ eV}} < {E_{k,e}} \leqslant 500\; {\rm{ eV}}$
    电离碰撞$0.0$${E_{k,e}} \leqslant 12.1\; {\rm{ eV}}$
    $(0.00136E_{k,e}^2 - 0.0226E_{k,e}^{1.5} + 0.14{E_{k,e}} - 0.38E_{k,e}^{0.5} + 0.387)\times {10^{ - 17}}$$12.1\; {\rm{ eV}} < {E_{k,e}} \leqslant 20\; {\rm{ eV}}$
    $( - 0.0006E_{k,e}^2 + 0.014E_{k,e}^{1.5} - 0.133{E_{k,e}} + 0.574E_{k,e}^{0.5} - 0.93)\times {10^{ - 17}}$$20\; {\rm{ eV}} < {E_{k,e}} \leqslant 44\; {\rm{ eV}}$
    $( - 1.6 \times {10^{ - 6}}E_{k,e}^2 + 0.1E_{k,e}^{1.5} - 0.024{E_{k,e}} + 0.022E_{k,e}^{0.5} - 0.02)\times {10^{ - 17}}$$44\; {\rm{ eV}} < {E_{k,e}} \leqslant 360\; {\rm{ eV}}$
    下载: 导出CSV
    Baidu
  • [1]

    Paschen F 1889 Wied. Annal. Phys. Chem. 37 69

    [2]

    Golden D E, Fisher L H 1965 Phys. Rev. 139 1452Google Scholar

    [3]

    Kagan Y M 1991 J. Phys. D: Appl. Phys. 24 882Google Scholar

    [4]

    Osmokrovic P, Loncar B, Gajic-Kvascev M 2004 IEEE Trans. Plasma Sci. 32 1849Google Scholar

    [5]

    Osmokrovic P, Vasic A 2005 IEEE Trans. Plasma Sci. 33 1672Google Scholar

    [6]

    Niemeyer L, Pietronero L, Wiesmann H J 1984 Phys. Rev. Lett. 52 1033Google Scholar

    [7]

    Wiesmann H J, Zeller H R 1986 J. Phys. D: Appl. Phys. 60 1770Google Scholar

    [8]

    Niemeyer L 1987 J. Phys. D: Appl. Phys. 20 897Google Scholar

    [9]

    Noskov M D, Kukhta V R, Lopatin V V 1995 J. Phys. D: Appl. Phys. 28 1187Google Scholar

    [10]

    Dulan A, Upul S A, Marcus B B, Vernon C 2015 J. Electrostat. 73 33Google Scholar

    [11]

    火元莲, 张广庶, 吕世华, 袁萍 2013 62 059201Google Scholar

    Huo Y L, Zhang G S, Lü S H, Yuan P 2013 Acta Phy. Sin. 62 059201Google Scholar

    [12]

    郑殿春, 丁宁, 沈湘东, 赵大伟, 郑秋平, 魏红庆 2016 65 024703Google Scholar

    Zheng D C, Ding N, Shen X D, Zhao D W, Zheng Q P, Wei H Q 2016 Acta Phy. Sin. 65 024703Google Scholar

    [13]

    Townsend J S 1925 J. Franklin Inst. 200 563Google Scholar

    [14]

    Mahalingam S, Nieter C, Loverich J, Smithe D, Stoltz P 2009 Open Plasma Phys. J. 2 63Google Scholar

    [15]

    Venkattraman A, Alexeenko A A 2012 P. Plasmas 19 123515Google Scholar

    [16]

    Shklyaev V A, Belomyttsev S Y, Ryzhov V V 2012 J. Appl. Phys. 112 113303Google Scholar

    [17]

    Macheret S O, Shneider M N 2013 Phys. Plasmas 20 101608Google Scholar

    [18]

    Szabo J J, Warner N, Martinez-Sanchez M 2014 J. Propul. Power 30 197Google Scholar

    [19]

    谢爱根, 张健, 刘斌, 王铁邦 2012 强激光与粒子束 24 481

    Xie A G, Zhang J, Liu B, Wang T B 2012 High Power Laser and Particle Beams 24 481

    [20]

    Huerta M, Ludeking L 2010 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orlando, USA, January 4-7, 2010 p1

    [21]

    武占成, 张希军, 胡有志 2012 气体放电 (北京: 国防工业出版社) 第69页

    Wu Z C, Zhang X J, Hu Y Z 2012 Gas Discharge (Beijing: National Defense Industry Press) p69 (in Chinese)

    [22]

    Daykin-Iliopoulos A, Gabriel S, Golosnoy I, Kubota K, Funaki I 2015 34th International Electric Propulsion Conference Hyogo-Kobe, Japan, July 4-10, 2015 p1

    [23]

    Zhao Y , Qing A , Meng Y , Song Z, Lin C 2018 Scientific Reports 8 1729

    [24]

    Zhao Y, Huang C, Qing A, Luo X 2017 IEEE Photonics Journal 9 1

  • [1] 左娟莉, 杨泓, 魏炳乾, 侯精明, 张凯. 气力提升系统气液两相流数值模拟分析.  , 2020, 69(6): 064705. doi: 10.7498/aps.69.20191755
    [2] 王汝佳, 吴士平, 陈伟. 热粘弹波在变温非均匀合金熔体中的传播.  , 2019, 68(4): 048101. doi: 10.7498/aps.68.20181923
    [3] 刘扬, 韩燕龙, 贾富国, 姚丽娜, 王会, 史宇菲. 椭球颗粒搅拌运动及混合特性的数值模拟研究.  , 2015, 64(11): 114501. doi: 10.7498/aps.64.114501
    [4] 王新鑫, 樊丁, 黄健康, 黄勇. 双钨极耦合电弧数值模拟.  , 2013, 62(22): 228101. doi: 10.7498/aps.62.228101
    [5] 陈石, 王辉, 沈胜强, 梁刚涛. 液滴振荡模型及与数值模拟的对比.  , 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [6] 蔡利兵, 王建国. 介质表面高功率微波击穿中释气现象的数值模拟研究.  , 2011, 60(2): 025217. doi: 10.7498/aps.60.025217
    [7] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟.  , 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [8] 王可胜, 刘全坤, 张德元. D2钢系列涂层磨损性能的数值模拟.  , 2009, 58(13): 89-S93. doi: 10.7498/aps.58.89
    [9] 宋男男, 吴士平, 栾义坤, 康秀红, 李殿中. 卧式离心铸造过程数值模拟与水力学试验研究.  , 2009, 58(13): 112-S117. doi: 10.7498/aps.58.112
    [10] 邓峰, 赵正予, 石润, 张援农. 中低纬电离层加热大尺度场向不均匀体的二维数值模拟.  , 2009, 58(10): 7382-7391. doi: 10.7498/aps.58.7382
    [11] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟.  , 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [12] 钱仙妹, 朱文越, 饶瑞中. 非均匀湍流路径上光传播数值模拟的相位屏分布.  , 2009, 58(9): 6633-6639. doi: 10.7498/aps.58.6633
    [13] 江慧丰, 张青川, 陈学东, 范志超, 陈忠家, 伍小平. 位错与溶质原子间动态相互作用的数值模拟研究.  , 2007, 56(6): 3388-3392. doi: 10.7498/aps.56.3388
    [14] 卢玉华, 詹杰民. 三维方腔温盐双扩散的格子Boltzmann方法数值模拟.  , 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [15] 朱昌盛, 王智平, 荆 涛, 肖荣振. 二元合金微观偏析的相场法数值模拟.  , 2006, 55(3): 1502-1507. doi: 10.7498/aps.55.1502
    [16] 王艳辉, 王德真. 介质阻挡均匀大气压氮气放电特性研究.  , 2006, 55(11): 5923-5929. doi: 10.7498/aps.55.5923
    [17] 张远涛, 王德真, 王艳辉. 大气压介质阻挡丝状放电时空演化数值模拟.  , 2005, 54(10): 4808-4815. doi: 10.7498/aps.54.4808
    [18] 王艳辉, 王德真. 大气压下多脉冲均匀介质阻挡放电的研究.  , 2005, 54(3): 1295-1300. doi: 10.7498/aps.54.1295
    [19] 王艳辉, 王德真. 介质阻挡均匀大气压辉光放电数值模拟研究.  , 2003, 52(7): 1694-1700. doi: 10.7498/aps.52.1694
    [20] 丁伯江, 匡光力, 刘岳修, 沈慰慈, 俞家文, 石跃江. 低杂波电流驱动的数值模拟.  , 2002, 51(11): 2556-2561. doi: 10.7498/aps.51.2556
计量
  • 文章访问数:  8296
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-12
  • 修回日期:  2019-02-14
  • 上网日期:  2019-03-23
  • 刊出日期:  2019-04-05

/

返回文章
返回
Baidu
map