搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

局部不均匀性对时空系统振荡频率的影响

高继华 史文茂 汤艳丰 肖骐 杨海涛

引用本文:
Citation:

局部不均匀性对时空系统振荡频率的影响

高继华, 史文茂, 汤艳丰, 肖骐, 杨海涛

Oscillatory frequencies in spatiotemporal system with local inhomogeneity

Gao Ji-Hua, Shi Wen-Mao, Tang Yan-Feng, Xiao Qi, Yang Hai-Tao
PDF
导出引用
  • 以复金兹堡-朗道方程为模型,利用数值实验方法观察了时空系统中螺旋波斑图的演化行为,发现在局域非均匀参数条件下,系统的螺旋波可以受到该杂质区域的影响而演化成为稳定的靶波. 研究表明,内传的螺旋波转换为稳定靶波的必要条件是非杂质系统和杂质系统的振荡频率相等且小于系统的固有频率,并在参数-频率空间形成一个特殊的V形区域. 进一步分析表明,该V形区域具有左右对称、两侧靶波传播方向相反以及随杂质区域参数2的增大而向参数2减小方向平移等性质.
    Target waves usually emit concentric circular waves, whereas spiral waves rotate around a central core (topological defect) region, the two forms of waves are closely related due to the similarity of their spatial structures. Spiral waves can be generated spontaneously in a homogeneous system, while target waves usually cannot be self-sustained in the same system. Therefore, spiral waves can be found in diverse natural systems, and target waves can be produced from the spirals with special boundary configurations or central pacemakers. The pacemaker of target wave is an oscillatory source or medium inhomogeneity. To model the inhomogeneity in some realistic situations, we introduce local parameter shifts and simulate the transition from spiral waves to target waves. In this research, the evolution of the spiral waves in the complex Ginzburg-Landau equation is investigated by numerical simulations, and the multi-spiral patterns can be transformed into stable target waves with local inhomogeneous parameter shifts in a two-dimensional (2D) spatiotemporal system. The detailed study shows that the initial multi-spiral waves can be influenced by introducing inhomogeneity in the local area of the system space, and the oscillatory frequency of the system plays an important role in changing the pattern. A successful transition from inwardly propagating spirals to target waves can be observed when the oscillatory frequencies of non-controlled and local inhomogeneous region, which have equal values, are both less than the inherent frequency of system. When we inspect the relationship between oscillatory frequencies and the characteristics of the inhomogeneous region, an intriguing V-shaped line is found in parameter-frequency diagram, and the V-shaped area presents three features. Firstly, the left and right sides of the V-shaped area are symmetrical. Secondly, the propagating directions of target waves from the left and right sides are opposite. An inwardly propagating target wave is formed on the left side of the V-shaped area, and an outwardly propagating target wave stably exists on the right side of the line. Thirdly, as local inhomogeneous parameter 2 increases, the V-shaped area moves towards the local inhomogeneous parameter 2 and decreases simultaneously, and the width of the V-shaped area remains approximately the same. To our knowledge, this V-shaped line is a novel observation, hence the changes of the system frequencies are thought to be provoking. This work presents the numerical experiments and theoretical analyses for the stable conditions of target waves, and therefore provides the ideas in the applications of signal propagation and mode competition.
      Corresponding author: Gao Ji-Hua, jhgao@szu.edu.cn;yanght63@szu.edu.cn ; Yang Hai-Tao, jhgao@szu.edu.cn;yanght63@szu.edu.cn
    • Funds: Project supported by the Shenzhen Science and Technology Research Fund (Grant No. JCYJ 2014 0418 1819 58489).
    [1]

    Zaikin A N, Zhabotinsky A M 1970 Nature 225 535

    [2]

    Ross J, Muller S C, Vidal C 1988 Science 240 460

    [3]

    Wolff J, Papathanasiou A G, Kevrekidis I G, Rotermund H H, Ertl G 2001 Science 294 134

    [4]

    Stich M, Mikhailov A S 2006 Physica D 215 38

    [5]

    Stich M, Mikhailov A S {2002 Phys. Chem. 216 512

    [6]

    Stich M, Ipsen M, Mikhailov A S 2001 Phys. Rev. Lett. 86 4406

    [7]

    Stich M, Mikhailov A S, Kuramoto Y 2009 Phys. Rev. E 79 026110

    [8]

    Vidal C, Pagola A 1989 Phys. Chem. 93 2711

    [9]

    Hagan P S 1981 Adv. Appl. Math 2 400

    [10]

    Vanag V K, Epstein I R 2001 Science 294 835

    [11]

    Shao X, Wu Y, Zhang J, Wang H, Ouyang Q 2008 Phys. Rev. Lett. 100 198304

    [12]

    Brusch L, Nicola E M, Bar M 2004 Phys. Rev. Lett. 92 089801

    [13]

    Nicola E M, Brusch L, Bar M 2004 Phys. Chem. B 108 14733

    [14]

    Li B W, Ying H P, Yang J S, Gao X 2010 Phys. Lett. A 374 3752

    [15]

    Li B W, Gao X, Deng Z G, Ying H P, Zhang H 2010 Euro. Phys. Lett. 91 34001

    [16]

    Jiang M, Wang X, Ouyang Q, Zhang H 2004 Phys. Rev. E 69 056202

    [17]

    He X, Zhang H, Hu B, Cao Z, Zheng B, Hu G 2007 New J. Phys. 9 66

    [18]

    Li B W, Zhang H, Ying H P, Chen W Q, Hu G 2008 Phys. Rev. E 77 056207

    [19]

    Gao J H, Zhan M 2007 Phys. Lett. A 371 96

    [20]

    Luo J, Zhan M 2008 Phys. Lett. A 372 2415

    [21]

    Mikhailov A S, Showalter K {2006 Phys. Rep. 42 79

    [22]

    Goryachev A, Kapral R 1996 Phys. Rev. E 54 5469

    [23]

    Aranson I S, Kramer L 2002 Rev. Mod. Phys. 74 99

    [24]

    Gao J H, Xie W M, Gao J Z, Yang H P, Ge Z C 2012 Acta Phys. Sin. 61 130506 (in Chinese) [高继华, 谢伟苗, 高加振, 杨海朋, 戈早川 2012 61 130506]

    [25]

    Kuramoto Y 1984 Chemical Oscillations, Waves, and Turbulence (New York: Springer)

    [26]

    Cross M, Hohenberg P 1993 Rev. Mod. Phys. 65 851

    [27]

    Xie L L, Gao J Z, Xie W M, Gao J H 2011 Chin. Phys. B 20 110503

    [28]

    Gao J H, Wang Y, Zhang C, Yang H P, Ge Z C {2014 Acta Phys. Sin. 63 020503 (in Chinese) [高继华, 王宇, 张超, 杨海朋, 戈早川 2014 63 020503]

  • [1]

    Zaikin A N, Zhabotinsky A M 1970 Nature 225 535

    [2]

    Ross J, Muller S C, Vidal C 1988 Science 240 460

    [3]

    Wolff J, Papathanasiou A G, Kevrekidis I G, Rotermund H H, Ertl G 2001 Science 294 134

    [4]

    Stich M, Mikhailov A S 2006 Physica D 215 38

    [5]

    Stich M, Mikhailov A S {2002 Phys. Chem. 216 512

    [6]

    Stich M, Ipsen M, Mikhailov A S 2001 Phys. Rev. Lett. 86 4406

    [7]

    Stich M, Mikhailov A S, Kuramoto Y 2009 Phys. Rev. E 79 026110

    [8]

    Vidal C, Pagola A 1989 Phys. Chem. 93 2711

    [9]

    Hagan P S 1981 Adv. Appl. Math 2 400

    [10]

    Vanag V K, Epstein I R 2001 Science 294 835

    [11]

    Shao X, Wu Y, Zhang J, Wang H, Ouyang Q 2008 Phys. Rev. Lett. 100 198304

    [12]

    Brusch L, Nicola E M, Bar M 2004 Phys. Rev. Lett. 92 089801

    [13]

    Nicola E M, Brusch L, Bar M 2004 Phys. Chem. B 108 14733

    [14]

    Li B W, Ying H P, Yang J S, Gao X 2010 Phys. Lett. A 374 3752

    [15]

    Li B W, Gao X, Deng Z G, Ying H P, Zhang H 2010 Euro. Phys. Lett. 91 34001

    [16]

    Jiang M, Wang X, Ouyang Q, Zhang H 2004 Phys. Rev. E 69 056202

    [17]

    He X, Zhang H, Hu B, Cao Z, Zheng B, Hu G 2007 New J. Phys. 9 66

    [18]

    Li B W, Zhang H, Ying H P, Chen W Q, Hu G 2008 Phys. Rev. E 77 056207

    [19]

    Gao J H, Zhan M 2007 Phys. Lett. A 371 96

    [20]

    Luo J, Zhan M 2008 Phys. Lett. A 372 2415

    [21]

    Mikhailov A S, Showalter K {2006 Phys. Rep. 42 79

    [22]

    Goryachev A, Kapral R 1996 Phys. Rev. E 54 5469

    [23]

    Aranson I S, Kramer L 2002 Rev. Mod. Phys. 74 99

    [24]

    Gao J H, Xie W M, Gao J Z, Yang H P, Ge Z C 2012 Acta Phys. Sin. 61 130506 (in Chinese) [高继华, 谢伟苗, 高加振, 杨海朋, 戈早川 2012 61 130506]

    [25]

    Kuramoto Y 1984 Chemical Oscillations, Waves, and Turbulence (New York: Springer)

    [26]

    Cross M, Hohenberg P 1993 Rev. Mod. Phys. 65 851

    [27]

    Xie L L, Gao J Z, Xie W M, Gao J H 2011 Chin. Phys. B 20 110503

    [28]

    Gao J H, Wang Y, Zhang C, Yang H P, Ge Z C {2014 Acta Phys. Sin. 63 020503 (in Chinese) [高继华, 王宇, 张超, 杨海朋, 戈早川 2014 63 020503]

  • [1] 潘军廷, 何银杰, 夏远勋, 张宏. 极化电场对可激发介质中螺旋波的控制.  , 2020, 69(8): 080503. doi: 10.7498/aps.69.20191934
    [2] 徐莹, 王春妮, 靳伍银, 马军. 梯度耦合下神经元网络中靶波和螺旋波的诱发研究.  , 2015, 64(19): 198701. doi: 10.7498/aps.64.198701
    [3] 李伟恒, 黎维新, 潘飞, 唐国宁. 两层耦合可激发介质中螺旋波转变为平面波.  , 2014, 63(20): 208201. doi: 10.7498/aps.63.208201
    [4] 成玉国, 程谋森, 王墨戈, 李小康. 磁场对螺旋波等离子体波和能量吸收影响的数值研究.  , 2014, 63(3): 035203. doi: 10.7498/aps.63.035203
    [5] 高继华, 王宇, 张超, 杨海朋, 戈早川. 复Ginzburg-Landau方程中模螺旋波的稳定性研究.  , 2014, 63(2): 020503. doi: 10.7498/aps.63.020503
    [6] 陈醒基, 乔成功, 王利利, 周振玮, 田涛涛, 唐国宁. 间接延迟耦合可激发介质中螺旋波的演化.  , 2013, 62(12): 128201. doi: 10.7498/aps.62.128201
    [7] 赵龙, 杨继平, 郑艳红. 神经元网络螺旋波诱发机理研究.  , 2013, 62(2): 028701. doi: 10.7498/aps.62.028701
    [8] 胡柏林, 马军, 李凡, 蒲忠胜. 神经元网络中分布式电流诱导靶波机理研究.  , 2013, 62(5): 058701. doi: 10.7498/aps.62.058701
    [9] 陈醒基, 田涛涛, 周振玮, 胡一博, 唐国宁. 通过被动介质耦合的两螺旋波的同步.  , 2012, 61(21): 210509. doi: 10.7498/aps.61.210509
    [10] 周振玮, 陈醒基, 田涛涛, 唐国宁. 耦合可激发介质中螺旋波的控制研究.  , 2012, 61(21): 210506. doi: 10.7498/aps.61.210506
    [11] 邝玉兰, 唐国宁. 利用短期心脏记忆消除螺旋波和时空混沌.  , 2012, 61(19): 190501. doi: 10.7498/aps.61.190501
    [12] 董丽芳, 白占国, 贺亚峰. 非均匀可激发介质中的稀密螺旋波.  , 2012, 61(12): 120509. doi: 10.7498/aps.61.120509
    [13] 邝玉兰, 唐国宁. 心脏中的螺旋波和时空混沌的抑制研究.  , 2012, 61(10): 100504. doi: 10.7498/aps.61.100504
    [14] 高继华, 谢伟苗, 高加振, 杨海朋, 戈早川. 耦合复金兹堡-朗道(Ginzburg-Landau)方程中的模螺旋波.  , 2012, 61(13): 130506. doi: 10.7498/aps.61.130506
    [15] 韦海明, 唐国宁. 交替行为对螺旋波影响的数值模拟研究.  , 2011, 60(4): 040504. doi: 10.7498/aps.60.040504
    [16] 唐冬妮, 张旭, 任卫, 唐国宁. 可激发介质中环形异质介质导致自维持靶波.  , 2010, 59(8): 5313-5318. doi: 10.7498/aps.59.5313
    [17] 吕耀平, 顾国锋, 陆华春, 戴瑜, 唐国宁. 在不同扩散系数下反应扩散平面波的折射.  , 2009, 58(5): 2996-3000. doi: 10.7498/aps.58.2996
    [18] 甘正宁, 马 军, 张国勇, 陈 勇. 小世界网络上螺旋波失稳的研究.  , 2008, 57(9): 5400-5406. doi: 10.7498/aps.57.5400
    [19] 邓敏艺, 施 娟, 李华兵, 孔令江, 刘慕仁. 用晶格玻尔兹曼方法研究螺旋波的产生机制和演化行为.  , 2007, 56(4): 2012-2017. doi: 10.7498/aps.56.2012
    [20] 马 军, 靳伍银, 李延龙, 陈 勇. 随机相位扰动抑制激发介质中漂移的螺旋波.  , 2007, 56(4): 2456-2465. doi: 10.7498/aps.56.2456
计量
  • 文章访问数:  5318
  • PDF下载量:  236
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-04
  • 修回日期:  2016-05-23
  • 刊出日期:  2016-08-05

/

返回文章
返回
Baidu
map