-
固体材料的激光制冷是近年来发展起来的一个新的研究领域. 掺Tm3+的ZrF4-BaF2-LaF3-AlF3-NaF-PbF2(ZBLANP)玻璃材料是激光冷却的典型材料之一. 与另一种制冷掺杂离子Yb3+相比,Tm3+具有更好的制冷潜力. 目前制约材料制冷的一个主要机理就是荧光再吸收. 首先根据Tm3+:ZBLANP的光谱参数,利用半经典的随机行走模型得到了不同情况下的平均荧光再吸收次数,随后分析了荧光光子界面出射的全反射效应,并对所得结果进行了修正. 计算结果表明,荧光再吸收会导致量子效率降低0.5%-1%,出射荧光波长红移达到2-10 nm,激光制冷的效率和功率降低. 为了有利于荧光出射和净制冷的实现, 宜采用小体积细长棒的制冷元.Laser cooling of solid material has become a new developing research area in recent years. Tm3+ doped ZrF4-BaF2-LaF3-AlF3-NaF-PbF2 glass is one of the hot materials in this field. Compared with Yb3+, Tm3+ has better cooling potential. Up to date, one of the main factors restricting the cooling effect is fluorescent reabsorption. In this paper, firstly, using several spectral parameters of Tm3+, the reabsorption effect is calculated by stochastic model which is a semianalytical approach to this problem. The average number of absorption events is obtained. Afterwards, the effect of fluorescence trapping due to total internal reflection is analyzed. The results show that the quantum efficiency will be lowed by 0.5%1% due to reabsorption, that the redshift of the mean fluorescence wavelength is in the range of 210 nm, and that the cooling efficiency and the cooling power decrease. Finally, after discussion, we find that the use of a small size and a long thin geometry will benefit to the fluorescence emission and cooling effect.
-
Keywords:
- laser cooling /
- rare-earth ions /
- fluorescent reabsorption
[1] Pringsheim P 1929 Z. Phys. 57 739
[2] [3] Epstein R I, Buchwald M I, Edwards B C, Gosnell T R, Mungan C E 1995 Nature 377 500
[4] Hoyt C W, Sheik-Bahae M, Epstein R I, Edwards B C, Anderson J E 2000 Phys. Rev. Lett. 85 3600
[5] [6] [7] Fernandez J, Garcia A J, Balda R 2006 Phys. Rev. Lett. 97 033001
[8] Hoyt C W, Hasselbeck M P, Sheik-Bahae M, Epstein R I, Greenfield S, Thiede J, Distel J, Valencia J 2003 J. Opt. Soc. Am. B 20 1066
[9] [10] [11] Rayner A, Friese M E J, Truscott A G, Heckenberg N R, Rubinsztein-Dunlop H 2001 J. Mod. Opt. 48 103
[12] [13] Bowman S R, Mungan C E 2000 Appl. Phys. B 71 807
[14] Chen G X, Zhang Q Y, Zhao C, Shi D M, Jiang Z H 2010 Acta Phys. Sin. 59 1321 (in Chinese) [陈敢新、张勤远、赵 纯、石冬梅、姜中宏 2010 59 1321]
[15] [16] [17] Gao D L, Zhang X Y, Zhang Z L, Xu L M, Lei Y, Zheng H R 2009 Acta Phys. Sin. 58 6108 (in Chinese) [高当丽、张翔宇、张正龙、徐良敏、雷 瑜、郑海荣 2009 58 6108]
[18] [19] Chen X B, Wang C, Gregory J S, Naruhito S, Kang D G, Masaaki O, Yang G J, Peng F L 2009 Chin. Phys. B 18 5523
[20] Heeg B, DeBarber P A, Rumbles G 2005 Appl. Opt. 44 3117
[21] [22] [23] Olson R W, Loring R F, Fayer M D 1981 Appl. Opt. 20 2934
[24] [25] Heeg B, Rumbles G 2003 J. Appl. Phys. 93 1966
[26] [27] Saleh B 1991 Fundamentals of Photonics (New York: Wiley) p55
[28] [29] Luo X, Eisaman M D, Gosnell T R 1998 Opt. Lett. 23 639
[30] Zhao C H, Zhang B P, Shang P P 2009 Chin. Phys. B 18 5539
[31] -
[1] Pringsheim P 1929 Z. Phys. 57 739
[2] [3] Epstein R I, Buchwald M I, Edwards B C, Gosnell T R, Mungan C E 1995 Nature 377 500
[4] Hoyt C W, Sheik-Bahae M, Epstein R I, Edwards B C, Anderson J E 2000 Phys. Rev. Lett. 85 3600
[5] [6] [7] Fernandez J, Garcia A J, Balda R 2006 Phys. Rev. Lett. 97 033001
[8] Hoyt C W, Hasselbeck M P, Sheik-Bahae M, Epstein R I, Greenfield S, Thiede J, Distel J, Valencia J 2003 J. Opt. Soc. Am. B 20 1066
[9] [10] [11] Rayner A, Friese M E J, Truscott A G, Heckenberg N R, Rubinsztein-Dunlop H 2001 J. Mod. Opt. 48 103
[12] [13] Bowman S R, Mungan C E 2000 Appl. Phys. B 71 807
[14] Chen G X, Zhang Q Y, Zhao C, Shi D M, Jiang Z H 2010 Acta Phys. Sin. 59 1321 (in Chinese) [陈敢新、张勤远、赵 纯、石冬梅、姜中宏 2010 59 1321]
[15] [16] [17] Gao D L, Zhang X Y, Zhang Z L, Xu L M, Lei Y, Zheng H R 2009 Acta Phys. Sin. 58 6108 (in Chinese) [高当丽、张翔宇、张正龙、徐良敏、雷 瑜、郑海荣 2009 58 6108]
[18] [19] Chen X B, Wang C, Gregory J S, Naruhito S, Kang D G, Masaaki O, Yang G J, Peng F L 2009 Chin. Phys. B 18 5523
[20] Heeg B, DeBarber P A, Rumbles G 2005 Appl. Opt. 44 3117
[21] [22] [23] Olson R W, Loring R F, Fayer M D 1981 Appl. Opt. 20 2934
[24] [25] Heeg B, Rumbles G 2003 J. Appl. Phys. 93 1966
[26] [27] Saleh B 1991 Fundamentals of Photonics (New York: Wiley) p55
[28] [29] Luo X, Eisaman M D, Gosnell T R 1998 Opt. Lett. 23 639
[30] Zhao C H, Zhang B P, Shang P P 2009 Chin. Phys. B 18 5539
[31]
计量
- 文章访问数: 6778
- PDF下载量: 558
- 被引次数: 0