搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于扩展混沌映射的认证密钥协商协议

舒剑

引用本文:
Citation:

基于扩展混沌映射的认证密钥协商协议

舒剑

An authenticated key agreement protocol based on extended chaotic maps

Shu Jian
PDF
导出引用
  • 近年来,基于混沌映射和智能卡的认证密钥协商协议被相继提出. 然而,防篡改读卡器使得这类协议的实现成本较高并且很难在实际中广泛应用. 另外,基于混沌映射的数字签名方案需要很高的计算资源,这使得依赖签名方案的公钥发布存在安全问题. 据此,本文基于扩展混沌映射提出一种新的无智能卡的认证密钥协商协议. 新协议消除了公钥发布过程. 安全和性能分析表明,新协议能抵抗各类攻击并且计算复杂度较低. 因此,新协议更适合在实际环境中应用.
    Recently, many chaotic maps-based authenticated key agreement protocols using smart cards have been proposed. Unfortunately, tamper-resistant card readers make these protocols costly and unpractical. In addition, the digital signature scheme based on chaotic maps requires high computational resources. There exists security problem in publishing public keys which depend on signature schemes. In this paper, we will present a novel authenticated key protocol without smart cards while using extended Chebyshev maps. The proposed protocol eliminates the process of publishing the public key. Security and performance analysis show that our protocol can resist various attacks and yet is reasonably efficient. Therefore, our protocol is more suitable for practical applications.
    • 基金项目: 国家自然科学基金(批准号:61163053)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61163053).
    [1]

    Wei J, Liao X, Wong K, Xiang T 2006 Chaos Soliton. Fract. 30 1143

    [2]

    Liu Q, Fang J Q, Zhao G, Liu Y 2012Acta Phys. Sin. 61 130508 (in Chinese) [刘强, 方锦清, 赵耿, 李永 2012 61 130508]

    [3]

    Wang X Y, Bao M M 2013 Chin. Phys. B 22 050508

    [4]

    Xiao D, Liao X, Deng S 2005 Chaos Soliton. Fract. 24 65

    [5]

    He T T, Luo X S, Liao Z X, Wei Z C 2012 Acta Phys. Sin. 61 110506 (in Chinese) [何婷婷, 罗晓曙, 廖志贤, 韦正丛 2012 61 110506]

    [6]

    Wang F L 2011 Acta Phys. Sin. 60 110517 (in Chinese) [王福来 2011 60 110517]

    [7]

    Chen T M, Jiang R R 2013 Acta Phys. Sin. 62 040301 (in Chinese) [陈铁明, 蒋融融 2013 62 040301]

    [8]

    Bergamo P, Arco P, Santis A, Kocarev L 2005 IEEE Tran. Circuits. 52 1382

    [9]

    Han S Chang E 2009Chaos Soliton. Fract. 39 1283

    [10]

    Kocarev L, Tasev Z 2003 Proceedings of the 38th International Symposium on Circuits and Systems Bangkok, Thailand, May 25-28, 2003 p28

    [11]

    Xiao D, Liao X F, Deng S J 2007 Inf. Sci. 177 1136

    [12]

    Xiao D, Liao X, Wong K 2005 Chaos Soliton. Fract. 23 1327

    [13]

    Xiang T, Wong K, Liao X 2009 Chaos Soliton. Fract. 40 672

    [14]

    Wang X Y, Luan D P 2013 Chin. Phys. B 22 110503

    [15]

    Tseng H R, Jan R H, Yang W 2009 Proceedings of the 13th International Conference on Communications Dresden, Germany, June 14-18, 2009 p1

    [16]

    Niu Y J, Wang X Y 2011 Commun. Nonlinear Sci. Numer. Simul 16 1986

    [17]

    Yoon E J 2012 Commun. Nonlinear Sci. Numer. Simul. 17 2735

    [18]

    Lee C, Chen C, Wu C, Huang S 2012 Nonlinear Dyn. 69 79

    [19]

    He D, Chen Y 2012 Nonlinear Dyn. 69 1149

    [20]

    Xue K, Hong P 2012 Commun. Nonlinear Sci. Numer. Simul. 17 2969

    [21]

    Zhao F J, Gong P, Li S 2013 Nonlinear Dyn. 74 419

    [22]

    Guo X, Zhang J 2010 Inf. Sci. 180 4069

    [23]

    Gong P, Li P, Shi W B 2012 Nonlinear Dyn. 70 2401

    [24]

    Zhang L 2008 Chaos Soliton. Fract. 37 669

  • [1]

    Wei J, Liao X, Wong K, Xiang T 2006 Chaos Soliton. Fract. 30 1143

    [2]

    Liu Q, Fang J Q, Zhao G, Liu Y 2012Acta Phys. Sin. 61 130508 (in Chinese) [刘强, 方锦清, 赵耿, 李永 2012 61 130508]

    [3]

    Wang X Y, Bao M M 2013 Chin. Phys. B 22 050508

    [4]

    Xiao D, Liao X, Deng S 2005 Chaos Soliton. Fract. 24 65

    [5]

    He T T, Luo X S, Liao Z X, Wei Z C 2012 Acta Phys. Sin. 61 110506 (in Chinese) [何婷婷, 罗晓曙, 廖志贤, 韦正丛 2012 61 110506]

    [6]

    Wang F L 2011 Acta Phys. Sin. 60 110517 (in Chinese) [王福来 2011 60 110517]

    [7]

    Chen T M, Jiang R R 2013 Acta Phys. Sin. 62 040301 (in Chinese) [陈铁明, 蒋融融 2013 62 040301]

    [8]

    Bergamo P, Arco P, Santis A, Kocarev L 2005 IEEE Tran. Circuits. 52 1382

    [9]

    Han S Chang E 2009Chaos Soliton. Fract. 39 1283

    [10]

    Kocarev L, Tasev Z 2003 Proceedings of the 38th International Symposium on Circuits and Systems Bangkok, Thailand, May 25-28, 2003 p28

    [11]

    Xiao D, Liao X F, Deng S J 2007 Inf. Sci. 177 1136

    [12]

    Xiao D, Liao X, Wong K 2005 Chaos Soliton. Fract. 23 1327

    [13]

    Xiang T, Wong K, Liao X 2009 Chaos Soliton. Fract. 40 672

    [14]

    Wang X Y, Luan D P 2013 Chin. Phys. B 22 110503

    [15]

    Tseng H R, Jan R H, Yang W 2009 Proceedings of the 13th International Conference on Communications Dresden, Germany, June 14-18, 2009 p1

    [16]

    Niu Y J, Wang X Y 2011 Commun. Nonlinear Sci. Numer. Simul 16 1986

    [17]

    Yoon E J 2012 Commun. Nonlinear Sci. Numer. Simul. 17 2735

    [18]

    Lee C, Chen C, Wu C, Huang S 2012 Nonlinear Dyn. 69 79

    [19]

    He D, Chen Y 2012 Nonlinear Dyn. 69 1149

    [20]

    Xue K, Hong P 2012 Commun. Nonlinear Sci. Numer. Simul. 17 2969

    [21]

    Zhao F J, Gong P, Li S 2013 Nonlinear Dyn. 74 419

    [22]

    Guo X, Zhang J 2010 Inf. Sci. 180 4069

    [23]

    Gong P, Li P, Shi W B 2012 Nonlinear Dyn. 70 2401

    [24]

    Zhang L 2008 Chaos Soliton. Fract. 37 669

  • [1] 马洛嘉, 丁华建, 陈子骐, 张春辉, 王琴. 一种态制备误差容忍的量子数字签名协议.  , 2024, 73(2): 020301. doi: 10.7498/aps.73.20231190
    [2] 扶龙香, 贺少波, 王会海, 孙克辉. 离散忆阻混沌系统的Simulink建模及其动力学特性分析.  , 2022, 71(3): 030501. doi: 10.7498/aps.71.20211549
    [3] 扶龙香, 贺少波, 王会海, 孙克辉. 离散忆阻混沌系统的Simulink建模及其动力学特性分析.  , 2021, (): . doi: 10.7498/aps.70.20211549
    [4] 唐杰, 石磊, 魏家华, 于惠存, 薛阳, 武天雄. 基于d维GHZ态的多方量子密钥协商.  , 2020, 69(20): 200301. doi: 10.7498/aps.69.20200799
    [5] 王传福, 丁群. 基于混沌系统的SM4密钥扩展算法.  , 2017, 66(2): 020504. doi: 10.7498/aps.66.020504
    [6] 党小宇, 李洪涛, 袁泽世, 胡文. 基于数模混合的混沌映射实现.  , 2015, 64(16): 160501. doi: 10.7498/aps.64.160501
    [7] 吕善翔, 冯久超. 一种混沌映射的相空间去噪方法.  , 2013, 62(23): 230503. doi: 10.7498/aps.62.230503
    [8] 尹逊汝, 马文平, 申冬苏, 王丽丽. 基于Bell态的三方量子密钥协商.  , 2013, 62(17): 170304. doi: 10.7498/aps.62.170304
    [9] 陈铁明, 蒋融融. 混沌映射和神经网络互扰的新型复合流密码.  , 2013, 62(4): 040301. doi: 10.7498/aps.62.040301
    [10] 何婷婷, 罗晓曙, 廖志贤, 韦正丛. 一种新的混沌映射散列函数构造方法及应用.  , 2012, 61(11): 110506. doi: 10.7498/aps.61.110506
    [11] 李家标, 曾以成, 陈仕必, 陈家胜. 改进型Hénon映射生成混沌伪随机序列及性能分析.  , 2011, 60(6): 060508. doi: 10.7498/aps.60.060508
    [12] 张雪锋, 范九伦. 一种新的分段非线性混沌映射及其性能分析.  , 2010, 59(4): 2298-2304. doi: 10.7498/aps.59.2298
    [13] 王兴元, 王明军. 二维Logistic映射的混沌控制.  , 2008, 57(2): 731-736. doi: 10.7498/aps.57.731
    [14] 韩祥临, 姜长元, 葛红霞, 戴世强. 基于智能交通系统的耦合映射跟驰模型和交通拥堵控制.  , 2007, 56(8): 4383-4392. doi: 10.7498/aps.56.4383
    [15] 王继志, 王英龙, 王美琴. 一类基于混沌映射构造Hash函数方法的碰撞缺陷.  , 2006, 55(10): 5048-5054. doi: 10.7498/aps.55.5048
    [16] 彭 飞, 丘水生, 龙 敏. 基于二维超混沌映射的单向Hash函数构造.  , 2005, 54(10): 4562-4568. doi: 10.7498/aps.54.4562
    [17] 张家树, 肖先赐. 基于广义混沌映射切换的混沌同步保密通信.  , 2001, 50(11): 2121-2125. doi: 10.7498/aps.50.2121
    [18] 王改云, 虞厥邦, 古天祥. 控制离散映射系统混沌的一种方法.  , 2001, 50(12): 2307-2310. doi: 10.7498/aps.50.2307
    [19] 谭 宁, 陈永红, 徐健学. 耦合帐篷映射混沌同步系统的筛形吸引域.  , 2000, 49(7): 1215-1220. doi: 10.7498/aps.49.1215
    [20] 刘剑波, 叶春飞, 张树京. 基于收缩映射的奇异非混沌系统同步.  , 2000, 49(1): 20-23. doi: 10.7498/aps.49.20
计量
  • 文章访问数:  6079
  • PDF下载量:  523
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-29
  • 修回日期:  2013-11-21
  • 刊出日期:  2014-03-05

/

返回文章
返回
Baidu
map