-
2002年Scholz和Buzaré对蓝宝石晶体中Fe3+离子的基态分裂重新进行了EPR实验测量和研究,他们的初步分析表明在蓝宝石晶体中Fe3+离子的6A1基态分裂有可能同时与两个方向的畸变角(Δθ 和Δφ)有关. 本文采用对角化d5组态在C3点群对称下的252×252完全能量矩阵的方法,对蓝宝石晶体中Fe3+离子的光谱和EPR谱进行了系统的研究. 计算结果表明蓝宝石体系中Fe3+离子的6A1基态分裂确实将明显依赖于两个方向的畸变角Δθ和Δφ,这一理论结果与Scholz和Buzaré等的实验相符合. 同时,通过拟合Fe3+离子在蓝宝石体系中的实验光谱和EPR参量,确定了蓝宝石晶体中(FeO6)9-团簇局域晶格畸变角Δθi 的范围.
-
关键词:
- α-Al2O3:Fe3+体系 /
- 6A1基态分裂 /
- 局域晶格畸变 /
- 电子顺磁共振谱
Electron paramagnetic resonance (EPR) spectra for Fe3+ in sapphire were measured and studied by Scholz and Buzaré in 2002. Their analysis shows that the ground-state splitting for Fe3+ in sapphire may be associated with two distortion angles Δθ and Δφ. By diagonalizing 252×252 complete energy matrix for the d5 configuration ion in C3 symmetry ligand-field, in this paper a systematic investigation about the ground-state splitting for Fe3+ in sapphire is given. Our results indicate that the 6A1 ground-state splitting are sensitively dependent on the local lattice distortion along the two directions, respectively, which supports the Scholz and Buzaré’s opinion. Meanwhile, by simulating the optical spectra and the EPR spectra for Fe3+ in sapphire, the local lattice distortion parameter Δθi can be obtained.-
Keywords:
- α-Al2O3:Fe3+ system /
- 6A1 ground-state splitting /
- local lattice distortion /
- electron paramagnetic resonance spectra
[1] Creedon D L, Benmessai K, Bowen W P, Tobar M E 2012 Phys. Rev. Lett. 108 093902
[2] Oh S H, Kauffmann Y, Scheu C, Kaplan W D, R hle M 2005 Science 310 661
[3] Akselrod M S, Bruni F J 2012 J. Cryst. Growth 360 134
[4] Zhang N C, Liu F S, Peng X J, Chen Y F, Wang J G, Zhang M J, Xue X D 2012 Acta Phys. Sin. 61 226501 [张宁超, 刘福生, 彭小娟, 陈源福, 王军国, 张明建, 薛学东 2012 61 226501]
[5] Krebsand J J, Maisch W G 1971 Phys. Rev. B 4 757
[6] Bramley R, McCool M B 1976 J. Phys. C: Solid State Phys. 9 1793
[7] Lee S, Brodbeek C M, Yuang C C 1977 Phys. Rev. B 15 2469
[8] Eigenmann K, Kurtz K, G nthard Hs H 1972 Chem. Phys. Letters 13 54
[9] Yu W L, Wang J Z 1993 Phys. Stat. Sol. (b) 176 433
[10] Sherman D M 1985 Phys. Chem. Miner 12 161
[11] McClure D S 1963 J. Chem. Phys. 38 2289
[12] Zheng W C 1998 Phys. B 245 119
[13] Zheng W C, Wu S Y 1997 J. Phys.: Condens. Matter 9 5081
[14] Kuang X Y 1987 Phys. Rev. B 36 712
[15] Kuang X Y, Lu C 2006 J. Phys. Chem. A 110 11353
[16] Açikgöz M 2012 Opt. Mater. 34 1128
[17] Zhao M G 1998 Chem. Phys. 109 8003
[18] Scholz G, Stö sser R, Klein J, Silly G, Buzarè J Y, Laligant Y, Ziemer B 2002 J. Phys.: Condens. Matter 14 2101
[19] Buzarè J Y, Silly G, Klein J, Scholz G, Stö sser R, Nofz M 2002 J. Phys. C 14 10331
[20] Kuang X Y 988 Phys. Rev. B 37 9719
[21] Wang L X, Kuang X Y, Li H F, Chai R P, Wang H Q 2010 Acta Phys. Sin. 59 6501 (in Chinese) [王利霞, 邝小渝, 李慧芳, 柴瑞鹏, 王怀谦 2010 59 6501]
[22] Curie D, Barthon C, Canny B 1974 J. Chem. Phys. 61 3048
[23] Newman D J, Urban W 1975 Adv. Phys. 24 793
[24] Wang H, Kuang X Y, Mao A J 2010 Acta Phys. Sin. 59 3450 (in Chinese) [王辉, 邝小渝, 毛爱杰 2010 59 3450]
[25] Abragam A, Bleany B 1970 Electron Paramagnetic Reaonance of Transiton Ions (London; Oxford University Press)
[26] Rudowicz C, Chung C Y 2004 J. Phys.: Condens. Matter 16 5825
[27] Artman J O, Murphy J C 1964 Phys. Rev. 135 A1622
[28] Kuang X Y 1992 Phys. Rev. B 45 8104
[29] Kuang X Y, Gou Q Q, Zhou K W 2002 Phys. Lett. A 293 293
-
[1] Creedon D L, Benmessai K, Bowen W P, Tobar M E 2012 Phys. Rev. Lett. 108 093902
[2] Oh S H, Kauffmann Y, Scheu C, Kaplan W D, R hle M 2005 Science 310 661
[3] Akselrod M S, Bruni F J 2012 J. Cryst. Growth 360 134
[4] Zhang N C, Liu F S, Peng X J, Chen Y F, Wang J G, Zhang M J, Xue X D 2012 Acta Phys. Sin. 61 226501 [张宁超, 刘福生, 彭小娟, 陈源福, 王军国, 张明建, 薛学东 2012 61 226501]
[5] Krebsand J J, Maisch W G 1971 Phys. Rev. B 4 757
[6] Bramley R, McCool M B 1976 J. Phys. C: Solid State Phys. 9 1793
[7] Lee S, Brodbeek C M, Yuang C C 1977 Phys. Rev. B 15 2469
[8] Eigenmann K, Kurtz K, G nthard Hs H 1972 Chem. Phys. Letters 13 54
[9] Yu W L, Wang J Z 1993 Phys. Stat. Sol. (b) 176 433
[10] Sherman D M 1985 Phys. Chem. Miner 12 161
[11] McClure D S 1963 J. Chem. Phys. 38 2289
[12] Zheng W C 1998 Phys. B 245 119
[13] Zheng W C, Wu S Y 1997 J. Phys.: Condens. Matter 9 5081
[14] Kuang X Y 1987 Phys. Rev. B 36 712
[15] Kuang X Y, Lu C 2006 J. Phys. Chem. A 110 11353
[16] Açikgöz M 2012 Opt. Mater. 34 1128
[17] Zhao M G 1998 Chem. Phys. 109 8003
[18] Scholz G, Stö sser R, Klein J, Silly G, Buzarè J Y, Laligant Y, Ziemer B 2002 J. Phys.: Condens. Matter 14 2101
[19] Buzarè J Y, Silly G, Klein J, Scholz G, Stö sser R, Nofz M 2002 J. Phys. C 14 10331
[20] Kuang X Y 988 Phys. Rev. B 37 9719
[21] Wang L X, Kuang X Y, Li H F, Chai R P, Wang H Q 2010 Acta Phys. Sin. 59 6501 (in Chinese) [王利霞, 邝小渝, 李慧芳, 柴瑞鹏, 王怀谦 2010 59 6501]
[22] Curie D, Barthon C, Canny B 1974 J. Chem. Phys. 61 3048
[23] Newman D J, Urban W 1975 Adv. Phys. 24 793
[24] Wang H, Kuang X Y, Mao A J 2010 Acta Phys. Sin. 59 3450 (in Chinese) [王辉, 邝小渝, 毛爱杰 2010 59 3450]
[25] Abragam A, Bleany B 1970 Electron Paramagnetic Reaonance of Transiton Ions (London; Oxford University Press)
[26] Rudowicz C, Chung C Y 2004 J. Phys.: Condens. Matter 16 5825
[27] Artman J O, Murphy J C 1964 Phys. Rev. 135 A1622
[28] Kuang X Y 1992 Phys. Rev. B 45 8104
[29] Kuang X Y, Gou Q Q, Zhou K W 2002 Phys. Lett. A 293 293
计量
- 文章访问数: 6039
- PDF下载量: 747
- 被引次数: 0