搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cs2NaMF6(M=Al, Ga):Cr3+ 络合分子体系局域结构和基态分裂的理论研究

王利霞 邝小渝 李慧芳 柴瑞鹏 王怀谦

引用本文:
Citation:

Cs2NaMF6(M=Al, Ga):Cr3+ 络合分子体系局域结构和基态分裂的理论研究

王利霞, 邝小渝, 李慧芳, 柴瑞鹏, 王怀谦

Theoretical study of local structure and ground-state splitting of Cs2NaMF6(M=Al, Ga):Cr3+ complex molecule systems

Wang Li-Xia, Kuang Xiao-Yu, Li Hui-Fang, Chai Rui-Peng, Wang Huai-Qian
PDF
导出引用
  • 采用双自旋轨道耦合系数模型并结合完全能量矩阵的方法对Cs2NaMF6(M=Al, Ga):Cr3+ 体系中Cr3+ 离子的基态分裂和局域结构进行了研究.通过模拟光谱和EPR谱确定了Cr3+ 取代 M3+ 形成的两种占位结构的畸变角,发现用双自旋轨道耦合系数模型与单自旋轨道耦合系数模型计算出的畸变角Δθ存在较大的差异.这表
    Based on the two spin orbit coupling parameter model and the complete energy matrices for a d3 configuration ion in a trigonal ligand field, the local structure and the ground-state splitting of Cr3+ ion in Cs2NaMF6(M=Al, Ga):Cr3+ systems have been studied. By simulating the EPR parameter D and the optical spectra, the distorted angles of two inequivalent sites formed by Cr3+ replacing M3+ are determined and the obvious difference of the distorted angles Δθ calculated by using two spin orbit coupling parameter model and single spin orbit coupling parameter model is found. Our results indicate that the influence of ligand F- can not be ignored with respect to spin orbit coupling mechanism when the energy level fine structure and local structure distortion of fluoride complex molecules are studied. Meanwhile, the dependence of EPR parameter D on angle θ, average parameter ζ1 and divergent parameter ζ2 is discussed, respectively.
    • 基金项目: 国家自然科学基金(批准号:10774103,10974138)资助的课题.
    [1]

    Vrielinck H, Loncke F, Callens F, Matthys P 2004 Phys. Rev. B 70 144111

    [2]

    Agate B, Rafailov E U, Sibbett W, Saltiel S M, Battle P, Fry T, Noonan E 2003 Opt. Lett. 28 1963

    [3]

    Keller U 2003 Nature 424 831

    [4]

    Sosman L P, Tavares Jr A D, Da Fonseca R J M, Abritta T, Khaidukov N M 2000 Solid State Commun. 114 661

    [5]

    Da Fonseca R J M, Tavares Jr A D, Silva P S, Abritta T, Khaidukov N M 1999 Solid State Commun. 110 519

    [6]

    Fargin E, Lestienne B, Dance J M 1990 Solid State Commun. 75 769

    [7]

    Vrielinck H, Khaidukov N M, Callens F, Matthys P 2002 Radiat. Eff. Defects Solids 157 1155

    [8]

    Pueyo L, Richardson J W 1977 J. Chem. Phys. 67 3583

    [9]

    Knox K 1960 Acta Cryst. 13 507

    [10]

    Bordallo H N, Wang X, Hanif K M, Strouse G F, Da Fonseca R J M, Sosman L P, Tavares Jr A D, 2002 J. Phys.: Condens. Matter 14 12383

    [11]

    Babel D, Haegele R, Pausewang G, Wall F 1973 Mater. Res. Bull. 8 1371

    [12]

    Sugano S, Tanabe Y, Kamimura H 1970 Multiplets of Transition Metal Ions in Crystals (New York: Academic)

    [13]

    Curie D, Barthon C, B Canny 1974 J. Chem. Phys. 61 3048

    [14]

    Zhao M G, Xu J A, Bai G R , Xie H S 1983 Phys. Rev. B 27 1516

    [15]

    Du M L, Rudowicz C 1992 Phys. Rev. B 46 8974

    [16]

    Griffith J S 1964 Theory of Transition-Metal Ions (London: Cambridge University press)

    [17]

    Slater J C 1960 Quantum Theory of Atomic Structure (New York: McGraw-Hill)

    [18]

    Newman D J, Urban W 1975 Adv. Phys. 24 793

    [19]

    Li F Z, Zhou Y Y 1998 Acta Phys. Sin. 47 472 (in Chinese) [李福珍、周一阳1998 47 472]

    [20]

    Abragam A, Bleaney B 1970 Electron Paramagnetic Resonance of Transition Ions (New York: Oxford University Press)

    [21]

    Bordallo H N, Henning R W, Sosman L P, Da Fonseca R J M, Tavares Jr A D, Hanif K M, Strouse G F 2001 J. Chem. Phys. 115 4300

    [22]

    Zheng W C 1995 Phys. B 215 255

    [23]

    Li Z M, Shuen W L 1996 J. Phys. Chem. Solids 57 1673

    [24]

    Cao X Z, Song T Y, Wang X Q 1997 Inorganic Chemistry (Beijing: HigherEducation Press) (in Chinese) [曹锡章、宋天佑、王杏乔1997 无机化学(北京:高等教育出版社)]

    [25]

    Clementi E, Raimondi D L 1963 J. Chem. Phys. 38 2686

    [26]

    Clementi E, Raimondi D L, Reinhardt W P 1967 J. Chem. Phys. 47 1300

    [27]

    Huang J L, Kuang X Y, Li Y 2008 Chem. Phys. Lett. 458 227

    [28]

    Wei Q, Yang Z Y, Wang C J, Xu Q M 2007 Acta Phys. Sin. 56 507 (in Chinese) [魏 群、杨子元、王参军、许启明1997 56 507]

  • [1]

    Vrielinck H, Loncke F, Callens F, Matthys P 2004 Phys. Rev. B 70 144111

    [2]

    Agate B, Rafailov E U, Sibbett W, Saltiel S M, Battle P, Fry T, Noonan E 2003 Opt. Lett. 28 1963

    [3]

    Keller U 2003 Nature 424 831

    [4]

    Sosman L P, Tavares Jr A D, Da Fonseca R J M, Abritta T, Khaidukov N M 2000 Solid State Commun. 114 661

    [5]

    Da Fonseca R J M, Tavares Jr A D, Silva P S, Abritta T, Khaidukov N M 1999 Solid State Commun. 110 519

    [6]

    Fargin E, Lestienne B, Dance J M 1990 Solid State Commun. 75 769

    [7]

    Vrielinck H, Khaidukov N M, Callens F, Matthys P 2002 Radiat. Eff. Defects Solids 157 1155

    [8]

    Pueyo L, Richardson J W 1977 J. Chem. Phys. 67 3583

    [9]

    Knox K 1960 Acta Cryst. 13 507

    [10]

    Bordallo H N, Wang X, Hanif K M, Strouse G F, Da Fonseca R J M, Sosman L P, Tavares Jr A D, 2002 J. Phys.: Condens. Matter 14 12383

    [11]

    Babel D, Haegele R, Pausewang G, Wall F 1973 Mater. Res. Bull. 8 1371

    [12]

    Sugano S, Tanabe Y, Kamimura H 1970 Multiplets of Transition Metal Ions in Crystals (New York: Academic)

    [13]

    Curie D, Barthon C, B Canny 1974 J. Chem. Phys. 61 3048

    [14]

    Zhao M G, Xu J A, Bai G R , Xie H S 1983 Phys. Rev. B 27 1516

    [15]

    Du M L, Rudowicz C 1992 Phys. Rev. B 46 8974

    [16]

    Griffith J S 1964 Theory of Transition-Metal Ions (London: Cambridge University press)

    [17]

    Slater J C 1960 Quantum Theory of Atomic Structure (New York: McGraw-Hill)

    [18]

    Newman D J, Urban W 1975 Adv. Phys. 24 793

    [19]

    Li F Z, Zhou Y Y 1998 Acta Phys. Sin. 47 472 (in Chinese) [李福珍、周一阳1998 47 472]

    [20]

    Abragam A, Bleaney B 1970 Electron Paramagnetic Resonance of Transition Ions (New York: Oxford University Press)

    [21]

    Bordallo H N, Henning R W, Sosman L P, Da Fonseca R J M, Tavares Jr A D, Hanif K M, Strouse G F 2001 J. Chem. Phys. 115 4300

    [22]

    Zheng W C 1995 Phys. B 215 255

    [23]

    Li Z M, Shuen W L 1996 J. Phys. Chem. Solids 57 1673

    [24]

    Cao X Z, Song T Y, Wang X Q 1997 Inorganic Chemistry (Beijing: HigherEducation Press) (in Chinese) [曹锡章、宋天佑、王杏乔1997 无机化学(北京:高等教育出版社)]

    [25]

    Clementi E, Raimondi D L 1963 J. Chem. Phys. 38 2686

    [26]

    Clementi E, Raimondi D L, Reinhardt W P 1967 J. Chem. Phys. 47 1300

    [27]

    Huang J L, Kuang X Y, Li Y 2008 Chem. Phys. Lett. 458 227

    [28]

    Wei Q, Yang Z Y, Wang C J, Xu Q M 2007 Acta Phys. Sin. 56 507 (in Chinese) [魏 群、杨子元、王参军、许启明1997 56 507]

  • [1] 王佳旭, 李忠辉, 赵炎, 蒋小康, 周恒为. Bi3+掺杂无铅双钙钛矿Cs2Ag0.6Na0.4InCl6的发光性质.  , 2024, 73(18): 187801. doi: 10.7498/aps.73.20240901
    [2] 李磊, 支钰崧, 张茂林, 刘增, 张少辉, 马万煜, 许强, 沈高辉, 王霞, 郭宇锋, 唐为华. 关于Ga2O3/Al0.1Ga0.9N同型异质结的双波段、双模式紫外探测性能分析.  , 2023, 72(2): 027301. doi: 10.7498/aps.72.20221738
    [3] 王志梅, 王虹, 薛乃涛, 成高艳. 自旋轨道耦合量子点系统中的量子相干.  , 2022, 71(7): 078502. doi: 10.7498/aps.71.20212111
    [4] 刘胜利, 厉建峥, 程杰, 王海云, 李永涛, 张红光, 李兴鳌. 强自旋轨道耦合化合物Sr2-xLaxIrO4的掺杂和拉曼谱学.  , 2015, 64(20): 207103. doi: 10.7498/aps.64.207103
    [5] 杨则金, 令狐荣锋, 程新路, 杨向东. Cr2MC(M=Al, Ga)的电子结构、弹性和热力学性质的第一性原理研究.  , 2012, 61(4): 046301. doi: 10.7498/aps.61.046301
    [6] 钟瑞霞, 张家骅, 李明亚, 王晓强. Eu2+, Cr3+共掺杂的MAl12O19 (M=Ca, Sr, Ba)的发光性质及能量传递.  , 2012, 61(11): 117801. doi: 10.7498/aps.61.117801
    [7] 袁剑辉, 杨昌虎, 张振华, 袁晓博. Cr3+掺杂的Cd3Al2Ge3O12光谱特性及晶场参数计算.  , 2008, 57(8): 5272-5276. doi: 10.7498/aps.57.5272
    [8] 罗鸿志, 贾 琳, 李养贤, 孟凡斌, 申 江, 陈难先, 吴光恒, 杨伏明. Er3(Fe, Co, M)29化合物(M=Cr, V, Ti, Mn, Ga, Nb)的结构与磁性.  , 2005, 54(11): 5246-5250. doi: 10.7498/aps.54.5246
    [9] 曾智江, 杨秋红, 徐 军. Cr3+:Al2O3透明多晶陶瓷光谱特性分析.  , 2005, 54(11): 5445-5449. doi: 10.7498/aps.54.5445
    [10] 杨杰慧, 潘留占, 徐游. Ce∶YIG自旋轨道耦合对磁光效应的影响.  , 2000, 49(4): 807-810. doi: 10.7498/aps.49.807
    [11] 沈异凡, 李万兴. 异核Na(3P)+Cs(6P)系统的碰撞能量合并.  , 1996, 45(5): 774-778. doi: 10.7498/aps.45.774
    [12] 黄小益, 马东平. MgO:Cr3+和MgO:V2+的能谱随温度移位的拟合计算.  , 1995, 44(8): 1310-1320. doi: 10.7498/aps.44.1310
    [13] 杜懋陆, 李兆民, 谌家军. d~3络合物零场分裂的双自旋-轨道耦合参数模型.  , 1995, 44(10): 1607-1614. doi: 10.7498/aps.44.1607
    [14] 杜懋陆, 谌家军, 陈康生. Ni2+—6X-络合物g因子的双自旋—轨道耦合系数模型.  , 1992, 41(7): 1174-1181. doi: 10.7498/aps.41.1174
    [15] 高文斌, 陈俊德, 杨石军, 叶丽丽, 鲁士平, 文根旺. YGG:Cr3+晶体的光谱特性.  , 1987, 36(5): 584-590. doi: 10.7498/aps.36.584
    [16] 吴光照, 张秀荣. BeAl2O4:Cr3+的晶场能级.  , 1983, 32(1): 64-70. doi: 10.7498/aps.32.64
    [17] 马笑山, 卢家金, 钱振英. BeAl2O4:Cr3+晶体的生长习性.  , 1983, 32(10): 1302-1310. doi: 10.7498/aps.32.1302
    [18] 刘大江, 陈教芳. 红宝石Cr3+离子的自旋-晶格弛豫时间和浓度效应.  , 1966, 22(2): 183-187. doi: 10.7498/aps.22.183
    [19] 张遵逵. Al2O3中Cr3+顺磁共振吸收线峰值和宽度与铬离子浓度的关系.  , 1964, 20(4): 381-382. doi: 10.7498/aps.20.381
    [20] 储连元. 原子核内的自旋轨道耦合.  , 1958, 14(6): 469-478. doi: 10.7498/aps.14.469
计量
  • 文章访问数:  5119
  • PDF下载量:  333
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-12-14
  • 修回日期:  2010-01-17
  • 刊出日期:  2010-09-15

/

返回文章
返回
Baidu
map