搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NiTi形状记忆合金形变机制的应变率相关性研究

刘洪涛 孙光爱 王沿东 陈波 汪小琳

引用本文:
Citation:

NiTi形状记忆合金形变机制的应变率相关性研究

刘洪涛, 孙光爱, 王沿东, 陈波, 汪小琳

Rate-dependences of deformation mechanisms in NiTi shape memory alloys

Liu Hong-Tao, Sun Guang-Ai, Wang Yan-Dong, Chen Bo, Wang Xiao-Lin
PDF
导出引用
  • 利用高速拉伸实验机在宽的应变率范围内(0.001–1200 s-1), 研究了NiTi形状记忆合金的宏观力学性能随应变率的变化规律, 并借助透射电子显微镜深入研究了微观结构在不同应变率下的演变机制. 研究发现: NiTi合金马氏体(B19’相)孪晶的解孪晶应力随应变率的升高而近乎线性增大, 表明NiTi 合金解孪晶应力具有正向应变率相关性. 在拉伸应变率为10 s-1的样品微观结构中发现了大量的解孪晶区域, 而当应变率进一步增大到100 s-1和 1200 s-1时, 在样品中没有发现解孪晶区域的存在, 样品微观组织以孪晶形式存在. 该结果表明, NiTi合金的马氏体解孪晶速率应在 10–100 s-1范围内. 在高应变率下(≥qslant10 s-1)均发现了热引发奥氏体相(B2)的存在, 表明随应变率的增加, 拉伸过程由等温过程逐渐变为绝热过程. 此外, 在1200 s-1 的样品差示扫描热量曲线中还发现了一个小肩峰, 表明相变过程由一步相变变为两步相变.
    In the NiTi shape memory alloys (SMAs), the macro-mechanical deformations and the microstructural evolutions at different strain-rates (0.001-1200 s-1) are investigated. It is found that the detwinning stress of martensitic twin increases with strain-rate increasing, which indicates that the detwinning stress has the positive strain-rate dependence. A large number of detwinning regions are found in the NiTi specimen which is deformed at the strain-rate of 10 s-1 under tension. However, with the strain-rate further increasing up to 100 s-1 and 1200 s-1, no detwinning region is observed and many twins still exist. It is shown that the detwinning rates of martensitic twin in NiTi SMAs are in a range of 10-100 s-1. Simultaneously, thermally-induced austenite is detected in the NiTi specimens deformed at high strain-rates (≥qslant10 s-1). It is ascribed to the fact that there is a change from the isothermal process to the adiabatic process when the tensile strain-rate goes up to a critical value. Additionally, a small shoulder peak is detected in differential scanning calorimeter peak of 1200 s-1 strain-rate specimen, indicating that the two-stage phase transformation occurs.
    • 基金项目: 国家自然科学基金(批准号:91126001,11105128,51001024)和中国工程物理研究院科学技术发展基金(批准号:2010A0103002)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91126001, 11105128, 51001024) and the Science and Technology Foundation of Chinese Academy of Engineering Physics (Grant No. 2010A0103002).
    [1]

    Tsoi K A, Stalmans R, Schrooten J, Wevers M, Mai Y W 2003 Mater. Sci. Eng. A 342 207

    [2]

    Dolce M, Cardone D, Marnetto R 2000 Earthq. Eng. Struct. Dyn. 29 945

    [3]

    Zi-xue Q, Xing-tian Y, Jiang Y, Costas S 2006 Smart Mater. Struct. 15 1047

    [4]

    Liu Y, Li Y, Xie Z, Ramesh K T 2002 Philos. Mag. Lett. 82 511

    [5]

    Chang B C, Shaw J, Iadicola M 2006 Continuum Mech. Thermodyn. 18 83

    [6]

    Li H, Mao C, Ou J 2005 J. Mater. Civ. Eng. 17 676

    [7]

    Schmidt I 2006 J. Eng. Mater. Technol. 128 279

    [8]

    Shaw J A, Kyriakides S 1995 J. Mech. Phys. Solids 43 1243

    [9]

    Tobushi H, Shimeno Y, Hachisuka T, Tanaka K 1998 Mech. Mater. 30 141

    [10]

    Tobushi H, Takata K, Shimeno Y, Nowacki W K, Gadaj S P 1999 J. Mater. Des. Appl. 213 93

    [11]

    Chen W W, Wu Q, Kang J H, Winfree N A 2001 Int. J. Solids Struct. 38 8989

    [12]

    Liu Y, Li Y, Ramesh K T 2002 Philos. Mag. A 82 2461

    [13]

    Liu Y, Humbeeck Jv, Li Y, Ramesh K T 1999 Scripta Mater. 41 89

    [14]

    Liu Y, Xie Z, van Humbeeck J 1999 Mater. Sci. Eng. A 273-275 673

    [15]

    Nemat-Nasser S, Choi J Y, Guo W G, Isaacs J B 2005 Mech. Mater. 37 287

    [16]

    Nemat-Nasser S, Choi J Y 2005 Acta Mater. 53 449

    [17]

    Kolsky H 1949 Proc. Phys. Soc. London. Sect. B 62 676

    [18]

    Xu X, Thadhani N N 2001 Scripta Mater. 44 2477

    [19]

    Liu H T, Sun G A, Wang Y D, Chen B, Wang X L 2013 Acta Phys. Sin. 62 018103 (in Chinese) [刘洪涛, 孙光爱, 王沿东, 陈波, 汪小琳 2013 62 018103]

    [20]

    Liu H C, Wu S K, Chou T S 1991 Acta Metall. Mater. 39 2069

    [21]

    Nakayama H, Tsuchiya K, Umemoto M 2001 Scripta Mater. 44 1781

    [22]

    Carroll M C, Somsen C, Eggeler G 2004 Scripta Mater. 50 187

  • [1]

    Tsoi K A, Stalmans R, Schrooten J, Wevers M, Mai Y W 2003 Mater. Sci. Eng. A 342 207

    [2]

    Dolce M, Cardone D, Marnetto R 2000 Earthq. Eng. Struct. Dyn. 29 945

    [3]

    Zi-xue Q, Xing-tian Y, Jiang Y, Costas S 2006 Smart Mater. Struct. 15 1047

    [4]

    Liu Y, Li Y, Xie Z, Ramesh K T 2002 Philos. Mag. Lett. 82 511

    [5]

    Chang B C, Shaw J, Iadicola M 2006 Continuum Mech. Thermodyn. 18 83

    [6]

    Li H, Mao C, Ou J 2005 J. Mater. Civ. Eng. 17 676

    [7]

    Schmidt I 2006 J. Eng. Mater. Technol. 128 279

    [8]

    Shaw J A, Kyriakides S 1995 J. Mech. Phys. Solids 43 1243

    [9]

    Tobushi H, Shimeno Y, Hachisuka T, Tanaka K 1998 Mech. Mater. 30 141

    [10]

    Tobushi H, Takata K, Shimeno Y, Nowacki W K, Gadaj S P 1999 J. Mater. Des. Appl. 213 93

    [11]

    Chen W W, Wu Q, Kang J H, Winfree N A 2001 Int. J. Solids Struct. 38 8989

    [12]

    Liu Y, Li Y, Ramesh K T 2002 Philos. Mag. A 82 2461

    [13]

    Liu Y, Humbeeck Jv, Li Y, Ramesh K T 1999 Scripta Mater. 41 89

    [14]

    Liu Y, Xie Z, van Humbeeck J 1999 Mater. Sci. Eng. A 273-275 673

    [15]

    Nemat-Nasser S, Choi J Y, Guo W G, Isaacs J B 2005 Mech. Mater. 37 287

    [16]

    Nemat-Nasser S, Choi J Y 2005 Acta Mater. 53 449

    [17]

    Kolsky H 1949 Proc. Phys. Soc. London. Sect. B 62 676

    [18]

    Xu X, Thadhani N N 2001 Scripta Mater. 44 2477

    [19]

    Liu H T, Sun G A, Wang Y D, Chen B, Wang X L 2013 Acta Phys. Sin. 62 018103 (in Chinese) [刘洪涛, 孙光爱, 王沿东, 陈波, 汪小琳 2013 62 018103]

    [20]

    Liu H C, Wu S K, Chou T S 1991 Acta Metall. Mater. 39 2069

    [21]

    Nakayama H, Tsuchiya K, Umemoto M 2001 Scripta Mater. 44 1781

    [22]

    Carroll M C, Somsen C, Eggeler G 2004 Scripta Mater. 50 187

  • [1] 徐爽, 许晟瑞, 王心颢, 卢灏, 刘旭, 贠博祥, 张雅超, 张涛, 张进成, 郝跃. 斜切蓝宝石衬底上GaN薄膜的位错降低机制.  , 2023, 72(19): 196101. doi: 10.7498/aps.72.20230793
    [2] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质.  , 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [3] 帅佳丽, 刘向鑫, 杨彪. 铁电半导体耦合薄膜电池中的反常载流子传输现象.  , 2016, 65(11): 118101. doi: 10.7498/aps.65.118101
    [4] 刘洪涛, 孙光爱, 王沿东, 陈波, 汪小琳. 冲击诱发NiTi形状记忆合金相变行为研究.  , 2013, 62(1): 018103. doi: 10.7498/aps.62.018103
    [5] 林志宇, 张进成, 许晟瑞, 吕玲, 刘子扬, 马俊彩, 薛晓咏, 薛军帅, 郝跃. 斜切蓝宝石衬底MOCVD生长GaN薄膜的透射电镜研究.  , 2012, 61(18): 186103. doi: 10.7498/aps.61.186103
    [6] 王震遐, 竺建康, 任翠兰, 张伟. C59N和C19N晶体的合成.  , 2009, 58(7): 5046-5050. doi: 10.7498/aps.58.5046
    [7] 胡 冰, 李晓娜, 董 闯, 姜 辛. 磁控溅射法合成纳米β-FeSi2/a-Si多层结构.  , 2007, 56(12): 7188-7194. doi: 10.7498/aps.56.7188
    [8] 吕惠民, 陈光德, 颜国君, 耶红刚. 低温条件下单晶氮化铝纳米线生长机理的研究.  , 2007, 56(5): 2808-2812. doi: 10.7498/aps.56.2808
    [9] 刘燕燕, E. Bauer-Grosse, 张庆瑜. 微波等离子体化学气相沉积合成掺氮金刚石薄膜的缺陷和结构特征及其生长行为.  , 2007, 56(4): 2359-2368. doi: 10.7498/aps.56.2359
    [10] 刘燕燕, E. Bauer-Grosse, 张庆瑜. 一氧化碳合成金刚石薄膜的形貌和结构分析.  , 2007, 56(11): 6572-6579. doi: 10.7498/aps.56.6572
    [11] 胡建刚, 王震遐, 勇震中, 李勤涛, 朱志远. 40Ar+诱导无定形碳到金刚石纳米晶相变的研究.  , 2006, 55(12): 6538-6542. doi: 10.7498/aps.55.6538
    [12] 刘仕锋, 秦国刚, 尤力平, 张纪才, 傅竹西, 戴 伦. 在双热舟化学气相沉积系统中通过掺In技术生长GaN纳米线和纳米锥.  , 2005, 54(9): 4329-4333. doi: 10.7498/aps.54.4329
    [13] 王震遐, 王 森, 胡建刚, 俞国军. 多壁碳纳米管在循环相变过程中结构变化初探.  , 2005, 54(9): 4263-4268. doi: 10.7498/aps.54.4263
    [14] 王 淼, 李振华, 齐藤弥八. 双壁纳米碳管的制备及其结构研究.  , 2003, 52(11): 2939-2940. doi: 10.7498/aps.52.2939
    [15] 丁 佩, 梁二军, 张红瑞, 刘一真, 刘 慧, 郭新勇, 杜祖亮. “锥形嵌套"结构CNx纳米管的生长机理及拉曼光谱研究.  , 2003, 52(1): 237-241. doi: 10.7498/aps.52.237
    [16] 张红瑞, 梁二军, 丁佩, 杜祖亮, 郭新勇. 硼碳氮纳米管的热解法制备及生长机理研究.  , 2002, 51(12): 2901-2905. doi: 10.7498/aps.51.2901
    [17] 王震遐, 李学鹏, 余礼平, 马余刚, 何国伟, 胡岗, 陈一, 段晓峰. 电子辐照诱发固态相变导致的氮化硼纳米结构生长.  , 2002, 51(3): 620-624. doi: 10.7498/aps.51.620
    [18] 李晓娜, 聂冬, 董闯, 马腾才, 金星, 张泽. 离子注入合成β-FeSi2薄膜的显微结构.  , 2002, 51(1): 115-124. doi: 10.7498/aps.51.115
    [19] 康俊勇, S.TSUNEKAWA, A.KASUYA. 超细SnO2纳米晶粒带边光吸收的线度效应.  , 2001, 50(11): 2198-2202. doi: 10.7498/aps.50.2198
    [20] 郭可信, 林保军. 镍铬合金中不全位错的透射电子显微镜观察.  , 1980, 29(4): 494-499. doi: 10.7498/aps.29.494
计量
  • 文章访问数:  5856
  • PDF下载量:  825
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-20
  • 修回日期:  2013-06-04
  • 刊出日期:  2013-09-05

/

返回文章
返回
Baidu
map