搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁诱导光透明过程中的Wigner-Yanse偏振信息

付静 刘万芳 赵玉杰

引用本文:
Citation:

电磁诱导光透明过程中的Wigner-Yanse偏振信息

付静, 刘万芳, 赵玉杰

Wigner-Yanse skew information of the system with the electromagnetically induced transparency

Fu Jing, Liu Wan-Fang, Zhao Yu-Jie
PDF
导出引用
  • 利用约化密度矩阵及信息的定义,研究了电磁诱导光透明机理下, 控制场变化过程中探测场与原子系综的Wigner-Yanse偏振信息, 结果表明:探测场信息转移过程中,原子的信息量不仅依赖于光子的数目及光子的状态, 还依赖于系综内原子的数目;调节控制场,使探测场不能通过介质时,探测场完成信息转移, 原子系综内单个原子信息量获得最大值,但探测场的信息量并没有完全地转移到原子系综.
    The quantum-information theoretic notation of the Winger-Yanse skew information has been used to analyze the process of information transfer between probe fields and atomic ensemble in the electromagnetically induced transparency. It is well known that the skew information is a well-defined measure that quantifies the amount of the information a quantum state contains. We have calculated the dynamical skew information of the probe fields and the atomic ensemble, and found that the information for the individual atom is dependent of the numbers of the particles and the photons, as well as the state of the probe field. For a sufficiently weak coherent driving field, the dark-state polaritons is a purely atomic state with no photons in the composite system, and the information of the individual atom reaches the maximum value. However, the information of the probe field is not completely transferred into the atomic ensemble.
    • 基金项目: 国家自然科学基金(批准号: 11275006);安徽省高校省自然科学基金(批准号: KJ2012B086);安徽省高校省级优秀青年人才基金项目(批准号: 2010SQRL107)和中国博士后基金(批准号: 2013M531530)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11275006), the Natural Science Foundation of the Anhui Higher Education Institutions of China (Grant No. KJ2012B086), the College Young Talents Foundation of Anhui Province, China (Grant No. 2010SQRL107), and the Postdoctoral Science Foundation of China (Grant No. 2013M531530).
    [1]

    Gray H R, Whitley R M, Stroud C R 1978 Jr. Opt. Lett. 3 218

    [2]

    Renzoni F, Maichen W, Windholz L, Arimondo E 1997 Phys. Rev. A 55 3710

    [3]

    Hong Yuan Ling 1996 Phys. Rev. A 53 1014

    [4]

    Harris S E, Field J E, Kasapi A 1992 Phys. Rev. A 46 29

    [5]

    Harris S E 1997 Phys. Today 50 36

    [6]

    Lezama A, Barreiro S, Akulshin A M 1999 Phys. Rev. A 59 4732

    [7]

    Yan S H, Zhang H Z, Guo X Z, Wang D, Gao J Y 1998 Acta Phys. Sin. 47 931 (in Chinese) [杨苏辉, 张汉壮, 国秀珍, 王冬, 高锦岳 1998 47 931]

    [8]

    Liu Z D, Wu Q 2004 Acta Phys. Sin. 53 2970 (in Chinese) [刘正东, 武强 2004 53 2970]

    [9]

    Lu C H, Tan L, Tan W T 2011 Acta Phys. Sin. 60 024204 (in Chinese) [吕纯海, 谭磊, 谭文婷 2011 60 024204]

    [10]

    Li X L, Zhang L S, Sun J, Feng X M 2012 Acta Phys. Sin. 61 044202 (in Chinese) [李晓莉, 张连水, 孙江, 冯晓敏 2012 61 044202]

    [11]

    Fleischhauer M, Keitel C H, Scully M O, Su C 1992 Opt. Commun. 87 109

    [12]

    Narducci L M, Doss H M 1991 Opt. Commun. 81 379

    [13]

    Zhu Y F 1992 Phys. Rev. A 45 6149

    [14]

    Lukin M D, Yelin S F, Fleischhauer M 2000 Phys. Rev. Lett. 84 4232

    [15]

    Fleischhauer M, Lukin M D 2000 Phys. Rev. Lett. 84 5094

    [16]

    Mattias Johnsson, Klaus Momer 2004 Phys. Rev. A 70 032320

    [17]

    Schori C, Julsgaard B, Soensen J L, Polzik E S 2002 Phys. Rev. Lett. 89 057903

    [18]

    Sun C P, Li Y, Liu X F 2003 Phys. Rev. Lett. 91 147903

    [19]

    Wigner E P, Yanase M M 1963 Proc. Natl. Acad. Sci. USA, 49

    [20]

    Luo S L 2003 Phys. Rev. Lett. 91 18

    [21]

    Chen Z Q 2005 Phys. Rev. A 71 052302

    [22]

    Liu W F, Yin X C, Zhang L H 2011 Int. J. Theor. Phys. 50 3375

    [23]

    Sun H G, Liu W F, Li C J 2011 Chin. Phys. B 20 090301

    [24]

    Zhang L H, Liu W F, Li C J 2010 J. At. Mol. Phys. 27 893 (in Chinese) [章礼华, 刘万芳, 李春杰 2010 原子与分子 27 893]

  • [1]

    Gray H R, Whitley R M, Stroud C R 1978 Jr. Opt. Lett. 3 218

    [2]

    Renzoni F, Maichen W, Windholz L, Arimondo E 1997 Phys. Rev. A 55 3710

    [3]

    Hong Yuan Ling 1996 Phys. Rev. A 53 1014

    [4]

    Harris S E, Field J E, Kasapi A 1992 Phys. Rev. A 46 29

    [5]

    Harris S E 1997 Phys. Today 50 36

    [6]

    Lezama A, Barreiro S, Akulshin A M 1999 Phys. Rev. A 59 4732

    [7]

    Yan S H, Zhang H Z, Guo X Z, Wang D, Gao J Y 1998 Acta Phys. Sin. 47 931 (in Chinese) [杨苏辉, 张汉壮, 国秀珍, 王冬, 高锦岳 1998 47 931]

    [8]

    Liu Z D, Wu Q 2004 Acta Phys. Sin. 53 2970 (in Chinese) [刘正东, 武强 2004 53 2970]

    [9]

    Lu C H, Tan L, Tan W T 2011 Acta Phys. Sin. 60 024204 (in Chinese) [吕纯海, 谭磊, 谭文婷 2011 60 024204]

    [10]

    Li X L, Zhang L S, Sun J, Feng X M 2012 Acta Phys. Sin. 61 044202 (in Chinese) [李晓莉, 张连水, 孙江, 冯晓敏 2012 61 044202]

    [11]

    Fleischhauer M, Keitel C H, Scully M O, Su C 1992 Opt. Commun. 87 109

    [12]

    Narducci L M, Doss H M 1991 Opt. Commun. 81 379

    [13]

    Zhu Y F 1992 Phys. Rev. A 45 6149

    [14]

    Lukin M D, Yelin S F, Fleischhauer M 2000 Phys. Rev. Lett. 84 4232

    [15]

    Fleischhauer M, Lukin M D 2000 Phys. Rev. Lett. 84 5094

    [16]

    Mattias Johnsson, Klaus Momer 2004 Phys. Rev. A 70 032320

    [17]

    Schori C, Julsgaard B, Soensen J L, Polzik E S 2002 Phys. Rev. Lett. 89 057903

    [18]

    Sun C P, Li Y, Liu X F 2003 Phys. Rev. Lett. 91 147903

    [19]

    Wigner E P, Yanase M M 1963 Proc. Natl. Acad. Sci. USA, 49

    [20]

    Luo S L 2003 Phys. Rev. Lett. 91 18

    [21]

    Chen Z Q 2005 Phys. Rev. A 71 052302

    [22]

    Liu W F, Yin X C, Zhang L H 2011 Int. J. Theor. Phys. 50 3375

    [23]

    Sun H G, Liu W F, Li C J 2011 Chin. Phys. B 20 090301

    [24]

    Zhang L H, Liu W F, Li C J 2010 J. At. Mol. Phys. 27 893 (in Chinese) [章礼华, 刘万芳, 李春杰 2010 原子与分子 27 893]

  • [1] 王哲飞, 吴杰, 万发雨, 曾庆生, 侯建强, 傅佳辉, 吴群, 宋明歆, TayebA. Denidni. 基于类电磁诱导透明效应的极化转换滤波器.  , 2024, 73(18): 188101. doi: 10.7498/aps.73.20240632
    [2] 孙占硕, 王鑫, 王俊林, 樊勃, 张宇, 冯瑶. 基于类电磁诱导透明的双频段太赫兹超材料的传感和慢光特性.  , 2022, 71(13): 138101. doi: 10.7498/aps.71.20212163
    [3] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速.  , 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [4] 葛一凡, 吴毅萍, 臧小飞, 袁英豪, 陈麟. 暗态多极赝局域等离子模式的太赫兹涡旋光激发.  , 2020, 69(18): 184203. doi: 10.7498/aps.69.20200695
    [5] 白旭芳, 陈磊, 额尔敦朝鲁. 电磁场中施主中心量子点内磁极化子态寿命与qubit退相干.  , 2020, 69(14): 147802. doi: 10.7498/aps.69.20200242
    [6] 贾玥, 陈肖含, 张好, 张临杰, 肖连团, 贾锁堂. Rydberg原子的电磁诱导透明光谱的噪声转移特性.  , 2018, 67(21): 213201. doi: 10.7498/aps.67.20181168
    [7] 谭康伯, 路宏敏, 官乔, 张光硕, 陈冲冲. 电磁诱导透明暗孤子的耗散变分束缚分析.  , 2018, 67(6): 064207. doi: 10.7498/aps.67.20172567
    [8] 杨光, 王杰, 王军民. 采用高信噪比电磁诱导透明谱测定85Rb原子5D5/2态的超精细相互作用常数.  , 2017, 66(10): 103201. doi: 10.7498/aps.66.103201
    [9] 邓瑞婕, 闫智辉, 贾晓军. 基于电磁诱导透明机制的压缩光场量子存储.  , 2017, 66(7): 074201. doi: 10.7498/aps.66.074201
    [10] 杜英杰, 谢小涛, 杨战营, 白晋涛. 电磁诱导透明系统中的暗孤子.  , 2015, 64(6): 064202. doi: 10.7498/aps.64.064202
    [11] 杨丽君, 马立金, 吕东启, 张连水. 四能级系统中相位控制电磁诱导透明研究.  , 2011, 60(10): 104205. doi: 10.7498/aps.60.104205
    [12] 吕纯海, 谭磊, 谭文婷. 压缩真空中的电磁诱导透明.  , 2011, 60(2): 024204. doi: 10.7498/aps.60.024204
    [13] 李晓莉, 张连水, 杨宝柱, 杨丽君. 闭合Λ型4能级系统中的电磁诱导透明和电磁诱导吸收.  , 2010, 59(10): 7008-7014. doi: 10.7498/aps.59.7008
    [14] 佘彦超, 王登龙, 丁建文. 电磁感应透明介质中的弱光空间暗孤子环.  , 2009, 58(5): 3198-3202. doi: 10.7498/aps.58.3198
    [15] 张连水, 李晓莉, 王 健, 杨丽君, 冯晓敏, 李晓苇, 傅广生. 光学-射频双光子耦合作用下的电磁诱导透明和电磁诱导吸收.  , 2008, 57(8): 4921-4926. doi: 10.7498/aps.57.4921
    [16] 杨丽君, 张连水, 李晓莉, 李晓苇, 郭庆林, 韩 理, 傅广生. 多窗口可调谐电磁诱导透明研究.  , 2006, 55(10): 5206-5210. doi: 10.7498/aps.55.5206
    [17] 高 琨, 刘晓静, 刘德胜, 解士杰. 极化子单激发态的反向极化研究.  , 2005, 54(11): 5324-5328. doi: 10.7498/aps.54.5324
    [18] 刘德胜, 赵俊卿, 魏建华, 解士杰, 梅良模. 聚对苯乙炔的基态、极化子与双极化子激发态及其稳定性.  , 1999, 48(7): 1327-1333. doi: 10.7498/aps.48.1327
    [19] 解士杰, 梅良模, 孙鑫. 聚对苯撑[poly(p-phenylene)]的基态、极化子和双极化子激发态.  , 1989, 38(9): 1506-1509. doi: 10.7498/aps.38.1506
    [20] 邢彪, 孙鑫. 聚乙炔极化子的新电子束缚态.  , 1988, 37(3): 507-510. doi: 10.7498/aps.37.507
计量
  • 文章访问数:  6116
  • PDF下载量:  500
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-30
  • 修回日期:  2013-05-15
  • 刊出日期:  2013-09-05

/

返回文章
返回
Baidu
map