搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浅海矢量声场干涉结构形成机理及试验研究

林旺生 梁国龙 付进 张光普

引用本文:
Citation:

浅海矢量声场干涉结构形成机理及试验研究

林旺生, 梁国龙, 付进, 张光普

The mechanism of the interference structure in shallow water vector acoustic field and experimental investigation

Lin Wang-Sheng, Liang Guo-Long, Fu Jin, Zhang Guang-Pu
PDF
导出引用
  • 浅海低频声场的微观结构特征在于具有可用波导不变量表征的 稳定空间-频率干涉结构.声场兼具标量场和矢量场, 波导条件下二者联合决定声场的全部特性. 本文研究浅海声场空频干涉结构的矢量场特征. 理论分析了声压谱、动能密度谱、声强流谱等矢量场干涉结构的形成机理, 探讨了矢量场干涉结构的波导不变量表征, 数值仿真研究了Pekeris波导中能量和能流密度的干涉特性, 进行了宽带声源辐射矢量声场干涉特性及表征的海上试验.实测结果与理论、仿真分析有较好的一致性. 研究结果表明: 中近程和中远程声场均能模态相干, 有稳定的空频干涉结构, 并且矢量声场空频干涉结构存在多种形式, 除各种能量和能流密度谱图外, 相干系数谱也呈现干涉特征, 这些形式的空频干涉结构均可用波导不变量理论有效表征.
    The microscopic structure characteristic of low frequency sound propagation in shallow water is that a stable space-frequency interference structure represented by waveguide invariant exists. Both the scalar field and the vector field determine all the features of the acoustic field. The vector field characteristics of space-frequency interference structure in shallow water acoustic field are investigated. The theoretical analyses of the mechanism of interference structure in the sound pressure spectrum, the kinetic energy density spectrum, and the acoustic intensity flow spectrum in shallow water vector acoustic field are conducted, the numerical simulation studies of the interference of the Pekeris waveguide in energy and energy flow density characteristics are performed, and the sea trials for broadband sound source radiation vector sound field interference properties and characterization are also carried out. The experimental results accord with the theoretical analyses and simulation results very well. The research results show that stable space-frequency interference structure in acoustic vector field exists in many forms for modal coherent in short-distance and long-distance. In addition to various forms of energy and energy flux density spectra, in coherence-coefficient spectrum there appear the interference characteristics. These forms of space-frequency interference structure can be described by waveguide invariant theory effectively.
    • 基金项目: 国家自然科学基金(批准号: 51279043, 61201411, 51209059, 51009042);水声技术国防科技重点实验室基金(批准号: 9140C200203110C2003, 9140C200802110C2001);高等学校博士学科点专项科研基金(批准号: 20102304120030); 黑龙江省自然科学基金(批准号: E201024)和 黑龙江省普通高等学校青年学术骨干支持计划(批准号: 1253G019)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51279043, 61201411, 51209059, 51009042), the Science and Technology Foundation of State Key Laboratory of Underwater Acoustic Technology Laboratory, China (Grant Nos. 9140C200203110C2003, 9140C200802110C2001), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20102304120030), the Natural Science Foundation of Heilongjiang Province, China (Grant No. E201024), and the Youth Scholar Backbone Supporting Plan Project for General Colleges and Universities of Heilongjiang, China (Grant No. 1253G019).
    [1]

    Weston D E 1960 J. Acoust. Soc. Am. 32 647

    [2]

    Wood A B 1959 J. Acoust. Soc. Am. 31 1213

    [3]

    Gershman S G, Tuzhilkin Yu I 1965 Sov. Phys. Acoust. 1 34

    [4]

    Chuprov S D 1982 in Brekhovskih L M, Andreevoi L B (ed) Ocean Acoustics: Current State (Moscow: Nauka) pp71-91

    [5]

    Burenkov S V 1989 Soviet Phys. Acoust. 35 465

    [6]

    Grachev C A 1993 Soviet Phys. Acoust. 39 33

    [7]

    Kuz'kin C A 1999 Soviet Phys. Acoust. 45 224

    [8]

    D'Spain G L, Kuperman W A 1999 J. Acoust. Soc. Am. 106 2454

    [9]

    D'Spain G L, Williams D P, Kuperman W A, the SWARM 95 Team 2002 AIP Conference Proceedings of Ocean Acoustic Interference Phenomena and Signal Processing San Francisco, California, May 1-3, 2002 p171

    [10]

    Dall'Osto D R, Dahl P H, Chol J W 2012 J. Acoust. Soc. Am. 127 2023

    [11]

    Hui J Y, Sun G C, Zhao A B 2008 Acta Acust. 33 300 (in Chinese) [惠俊英, 孙国仓, 赵安邦2008声学学报 33 300]

    [12]

    Yu Y, Hui J Y, Zhao A B, Sun G C, Teng C 2008 Acta Phys. Sin. 57 5742 (in Chinese) [余赟, 惠俊英, 赵安邦, 孙国仓, 滕超2008 57 5742]

    [13]

    Yu Y, Hui J Y, Chen Y, Sun G C, Teng C 2009 Acta Phys. Sin. 58 6335 (in Chinese) [余赟, 惠俊英, 陈阳, 孙国仓, 滕超2009 58 6335]

    [14]

    Yang J, Hui J Y, Wang D J, Li S 2006 Tech. Acoust. 25 16 (in Chinese) [杨娟, 惠俊英, 王德俊, 李姝 2006声学技术 25 16]

    [15]

    Piao S C, Ren Q Y 2009 AIP Proceedings Conference of 2th International Conference on Shallow-water Acoustics Shanghai, China, September 17-19, 2009 p69

    [16]

    Ren Q Y, Hermand J P, Piao S C 2010 Proceedings Conference of OCEANS'10 MTS/IEEE Seattle Washington, USA, September 20-23, 2010 p1

    [17]

    Kuperman W A, Song H C 2012 AIP Conference Proceedings of Advances in Ocean Acoustics Beijing, China, May 1-3, 2012 p69

    [18]

    Schmidt H, Cockrell K L 2010 J. Acoust. Soc. Am. 127 2780

    [19]

    Rakotonariv S T, Kuperman W A 2012 J. Acoust. Soc. Am. 132 2218

    [20]

    Lin W S 2013 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [林旺生 2013 博士学位论文 (哈尔滨: 哈尔滨工程大学)]

    [21]

    Brekhovskikh L M, Lysanov Y P 2002 Fundamentals of Ocean Acoustics (New York: Springer-Verlag)

    [22]

    Shchurov V A 2003 Vector Acoustics of the Ocean (Vladivostok: Dalhauka)

  • [1]

    Weston D E 1960 J. Acoust. Soc. Am. 32 647

    [2]

    Wood A B 1959 J. Acoust. Soc. Am. 31 1213

    [3]

    Gershman S G, Tuzhilkin Yu I 1965 Sov. Phys. Acoust. 1 34

    [4]

    Chuprov S D 1982 in Brekhovskih L M, Andreevoi L B (ed) Ocean Acoustics: Current State (Moscow: Nauka) pp71-91

    [5]

    Burenkov S V 1989 Soviet Phys. Acoust. 35 465

    [6]

    Grachev C A 1993 Soviet Phys. Acoust. 39 33

    [7]

    Kuz'kin C A 1999 Soviet Phys. Acoust. 45 224

    [8]

    D'Spain G L, Kuperman W A 1999 J. Acoust. Soc. Am. 106 2454

    [9]

    D'Spain G L, Williams D P, Kuperman W A, the SWARM 95 Team 2002 AIP Conference Proceedings of Ocean Acoustic Interference Phenomena and Signal Processing San Francisco, California, May 1-3, 2002 p171

    [10]

    Dall'Osto D R, Dahl P H, Chol J W 2012 J. Acoust. Soc. Am. 127 2023

    [11]

    Hui J Y, Sun G C, Zhao A B 2008 Acta Acust. 33 300 (in Chinese) [惠俊英, 孙国仓, 赵安邦2008声学学报 33 300]

    [12]

    Yu Y, Hui J Y, Zhao A B, Sun G C, Teng C 2008 Acta Phys. Sin. 57 5742 (in Chinese) [余赟, 惠俊英, 赵安邦, 孙国仓, 滕超2008 57 5742]

    [13]

    Yu Y, Hui J Y, Chen Y, Sun G C, Teng C 2009 Acta Phys. Sin. 58 6335 (in Chinese) [余赟, 惠俊英, 陈阳, 孙国仓, 滕超2009 58 6335]

    [14]

    Yang J, Hui J Y, Wang D J, Li S 2006 Tech. Acoust. 25 16 (in Chinese) [杨娟, 惠俊英, 王德俊, 李姝 2006声学技术 25 16]

    [15]

    Piao S C, Ren Q Y 2009 AIP Proceedings Conference of 2th International Conference on Shallow-water Acoustics Shanghai, China, September 17-19, 2009 p69

    [16]

    Ren Q Y, Hermand J P, Piao S C 2010 Proceedings Conference of OCEANS'10 MTS/IEEE Seattle Washington, USA, September 20-23, 2010 p1

    [17]

    Kuperman W A, Song H C 2012 AIP Conference Proceedings of Advances in Ocean Acoustics Beijing, China, May 1-3, 2012 p69

    [18]

    Schmidt H, Cockrell K L 2010 J. Acoust. Soc. Am. 127 2780

    [19]

    Rakotonariv S T, Kuperman W A 2012 J. Acoust. Soc. Am. 132 2218

    [20]

    Lin W S 2013 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [林旺生 2013 博士学位论文 (哈尔滨: 哈尔滨工程大学)]

    [21]

    Brekhovskikh L M, Lysanov Y P 2002 Fundamentals of Ocean Acoustics (New York: Springer-Verlag)

    [22]

    Shchurov V A 2003 Vector Acoustics of the Ocean (Vladivostok: Dalhauka)

  • [1] 汪磊, 黄益旺, 郭霖, 任超. 浅海粗糙海底声散射建模及声场特性.  , 2024, 73(3): 034301. doi: 10.7498/aps.73.20231472
    [2] 韦宜政, 孙超, 朱启轩. 撤稿:《浅海矢量声场极化特性的深度分布规律》.  , 2024, 73(10): 109902. doi: 10.7498/aps.73.109902
    [3] 韦宜政, 孙超, 朱启轩. 浅海矢量声场极化特性的深度分布规律(已撤稿).  , 2024, 73(9): 094302. doi: 10.7498/aps.73.20231767
    [4] 李永飞, 郭瑞明, 赵航芳. 浅海内波环境下声场干涉条纹的稀疏重建.  , 2023, 72(7): 074301. doi: 10.7498/aps.72.20221932
    [5] 时胜国, 高塬, 张昊阳, 杨博全. 基于单元辐射叠加法的结构声源声场重建方法.  , 2021, 70(13): 134301. doi: 10.7498/aps.70.20201971
    [6] 张士钊, 朴胜春. 倾斜弹性海底条件下浅海声场的简正波相干耦合特性分析.  , 2021, 70(21): 214304. doi: 10.7498/aps.70.20211013
    [7] 孟瑞洁, 周士弘, 李风华, 戚聿波. 浅海波导中低频声场干涉简正模态的判别.  , 2019, 68(13): 134304. doi: 10.7498/aps.68.20190221
    [8] 宋文华, 王宁, 高大治, 王好忠, 屈科. 波导不变量谱值及其分离方法.  , 2017, 66(11): 114301. doi: 10.7498/aps.66.114301
    [9] 郭晓乐, 杨坤德, 马远良, 杨秋龙. 一种基于简正波模态消频散变换的声源距离深度估计方法.  , 2016, 65(21): 214302. doi: 10.7498/aps.65.214302
    [10] 戚聿波, 周士弘, 张仁和, 任云. 一种基于β-warping变换算子的被动声源距离估计方法.  , 2015, 64(7): 074301. doi: 10.7498/aps.64.074301
    [11] 鹿力成, 马力. 基于Warping变换的波导时频分析.  , 2015, 64(2): 024305. doi: 10.7498/aps.64.024305
    [12] 程广利, 张明敏, 胡金华. 一种更具普适性的浅海不确定声场快速算法.  , 2014, 63(8): 084301. doi: 10.7498/aps.63.084301
    [13] 林旺生, 梁国龙, 王燕, 付进, 张光普. 运动目标辐射声场干涉结构映射域特征研究.  , 2014, 63(3): 034306. doi: 10.7498/aps.63.034306
    [14] 宋文华, 胡涛, 郭圣明, 马力. 浅海内波影响下的波导不变量变化特性分析.  , 2014, 63(19): 194303. doi: 10.7498/aps.63.194303
    [15] 余赟, 惠俊英, 陈阳, 惠娟, 殷敬伟. 基于时空滤波理论的低频声场干涉结构研究.  , 2012, 61(5): 054303. doi: 10.7498/aps.61.054303
    [16] 余赟, 惠俊英, 陈阳, 孙国仓, 滕超. 浅海低频声场中目标深度分类方法研究.  , 2009, 58(9): 6335-6343. doi: 10.7498/aps.58.6335
    [17] 郭东耀, 郭石杉. cis-[PtDMBA(ClCH2CO2)2]晶体双相角结构不变量的符号分布.  , 1990, 39(7): 158-162. doi: 10.7498/aps.39.158-2
    [18] 孙宏林, 张纲, 郭东耀. 双波长双相角结构不变量的比邻原理.  , 1989, 38(5): 824-828. doi: 10.7498/aps.38.824
    [19] 唐应吾. 具有随机起伏表面的正声速梯度浅海中的简正波声场.  , 1976, 25(6): 481-486. doi: 10.7498/aps.25.481
    [20] 张仁和. 浅海表面声道中的简正波声场.  , 1975, 24(3): 200-209. doi: 10.7498/aps.24.200
计量
  • 文章访问数:  6501
  • PDF下载量:  3279
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-02
  • 修回日期:  2013-03-27
  • 刊出日期:  2013-07-05

/

返回文章
返回
Baidu
map