搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应核学习相关向量机的乳腺X线图像微钙化点簇处理方法研究

姚畅 陈后金 Yang Yong-Yi 李艳凤 韩振中 张胜君

引用本文:
Citation:

基于自适应核学习相关向量机的乳腺X线图像微钙化点簇处理方法研究

姚畅, 陈后金, Yang Yong-Yi, 李艳凤, 韩振中, 张胜君

Microcalcification clusters processing in mammograms based on relevance vector machine with adaptive kernel learning

Yao Chang, Chen Hou-Jin, Yang Yong-Yi, Li Yan-Feng, Han Zhen-Zhong, Zhang Sheng-Jun
PDF
导出引用
  • 采用自适应核学习相关向量机方法, 结合形态学滤波和Kallergi分簇标准, 研究了乳腺X线图像中微钙化点簇的处理. 首先将微钙化点检测看作一个监督学习问题, 然后应用自适应核学习相关向量机作为分类器判断图像中每一个位置是否为微钙化点并采用形态学处理滤除干扰噪声, 最后对获得的微钙化点采用Kallergi标准进行分簇. 为提高运算速度, 在微钙化点检测时将整个图像分解为多个子图像并行运算, 实现了一种基于自适应核学习相关向量机的微钙化点簇快速处理方法. 实验结果和分析表明, 自适应核学习相关向量机方法算法性能优于相关向量机方法, 特别是实现的快速方法能进一步降低微钙化点簇的处理时间.
    Using the method of adaptive kernel learning based relevance vector machine (ARVM) and combining the morphological filtering and the clustering criterion recommended by Kallergi, a new algorithm for microcalcification (MC) clusters processing in mammograms is investigated. Firstly, the detection of MC is formulated as a supervised-learning problem. Then the ARVM is used as a classifier to determine whether an MC object is present at each location in the mammogram and a morphological processing is used to remove the isolated spurious pixels. Finally, the identified MC clusters are obtained by Kallergi criterion. To improve the computational speed, a fast processing method based on ARVM is developed, in which the whole image is decomposed first into sub-image blocks for parallel operation. Experimental results indicate that the ARVM method outperforms the RVM method and, in particular, the fast processing method could greatly reduce the testing time.
    • 基金项目: 国家自然科学基金(批准号:61201363, 61271305, 60972093)、高等学校博士学科点专项科研基金(批准号:20110009110001)、中央高校基本科研业务费(批准号:2011JBM003)和北京交通大学人才基金(批准号:2012RC036)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61201363, 61271305, 60972093), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110009110001), the Fundamental Research Fund for the Central Universities, China (Grant No. 2011JBM003), and the Talents Foundation of Beijing Jiaotong University, China (Grant No. 2012RC036).
    [1]

    Ahmed M H, Magda E 2011 IEEE Reviws in Biomedical Engineering 4 103

    [2]

    Zhang X S, Gao X B, Wang Y, Zhang S J 2010 J. Infrared Millim Waves 29 27 (in Chinese) [张新生, 高新波, 王颖, 张士杰 2010 红外与毫米波学报 29 27]

    [3]

    Liu G D, Zhang Y R 2011 Acta Phys. Sin. 60 074303 (in Chinese) [刘广东, 张业荣 2011 60 074303]

    [4]

    Xiang L Z, Xing D, Guo H, Yang S H 2009 Acta Phys. Sin. 58 4610 (in Chinese) [向良忠, 邢达, 郭华, 杨思华 2009 58 4610]

    [5]

    Zhang H 2004 Acta Phys. Sin. 53 2515 (in Chinese) [张航 2004 53 2515]

    [6]

    Xu X H, Li H 2008 Acta Phys. Sin. 57 4623 (in Chinese) [徐晓辉, 李晖 2008 57 4623]

    [7]

    Xiao X, Xu L, Liu B Y 2013 Acta Phys. Sin. 62 044105 (in Chinese) [肖夏, 徐立, 刘冰雨 2013 62 044105]

    [8]

    Che L L, Zhang G Y, Song L, Cao W F 2011 Chin. J. Med. Phys. 28 2467 (in Chinese) [车琳琳, 张光玉, 宋莉, 曹卫芳 2011中国医学物理学杂志 28 2467]

    [9]

    Tang J, Rangayyan R M, Xu J, Naqa I El, Yang Y Y 2009 IEEE Trans. Inform. Technol. Biomed. 13 236

    [10]

    Jing H, Yang Y Y, Nishikawa R M 2011 Phys. Med. Biol. 56 1

    [11]

    Jiang J, Yao B, Wason A M 2007 Comput. Med. Imag. Graph. 31 49

    [12]

    Naqa I E, Yang Y Y, Wernick M N, Galatsanos N P, Nishikawa R M 2002 IEEE Trans. Med. Imag. 21 1552

    [13]

    Wei L, Yang Y Y, Nishikawa R M, Wernick M N, Edwards A 2005 IEEE Trans. Med. Imag. 24 1278

    [14]

    Tzikas D G, Likas A C, Galatsanos N P 2009 IEEE Trans. Neural Networks 20 926

    [15]

    Tipping M, Faul A 2003 Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics Key West, USA, January 3-6, 2003 p1

    [16]

    Kallergi M, Carney G M, Gaviria J 1999 Med. Phys. 26 267

    [17]

    Muller K R, Mika S, Ratsch G, Tsuda K, Scholkopf B 2001 IEEE Trans. Neural Networks 12 181

    [18]

    Bunch P C, Hamilton J F, Sanderson G K, Simmons A H 1978 J. Appl. Photogr. Eng. 4 166

    [19]

    Samuelson F W, Petrick N 2006 Proceedings of 3rd IEEE International Symposium On Biodedical Imaging Arlington, USA, April 4-6, 2006 p1312

    [20]

    Xing H Y, Qi Z D, Xu W 2012 Acta Phys. Sin. 61 240504 (in Chinese) [行鸿彦, 祁峥东, 徐伟 2012 61 240504]

  • [1]

    Ahmed M H, Magda E 2011 IEEE Reviws in Biomedical Engineering 4 103

    [2]

    Zhang X S, Gao X B, Wang Y, Zhang S J 2010 J. Infrared Millim Waves 29 27 (in Chinese) [张新生, 高新波, 王颖, 张士杰 2010 红外与毫米波学报 29 27]

    [3]

    Liu G D, Zhang Y R 2011 Acta Phys. Sin. 60 074303 (in Chinese) [刘广东, 张业荣 2011 60 074303]

    [4]

    Xiang L Z, Xing D, Guo H, Yang S H 2009 Acta Phys. Sin. 58 4610 (in Chinese) [向良忠, 邢达, 郭华, 杨思华 2009 58 4610]

    [5]

    Zhang H 2004 Acta Phys. Sin. 53 2515 (in Chinese) [张航 2004 53 2515]

    [6]

    Xu X H, Li H 2008 Acta Phys. Sin. 57 4623 (in Chinese) [徐晓辉, 李晖 2008 57 4623]

    [7]

    Xiao X, Xu L, Liu B Y 2013 Acta Phys. Sin. 62 044105 (in Chinese) [肖夏, 徐立, 刘冰雨 2013 62 044105]

    [8]

    Che L L, Zhang G Y, Song L, Cao W F 2011 Chin. J. Med. Phys. 28 2467 (in Chinese) [车琳琳, 张光玉, 宋莉, 曹卫芳 2011中国医学物理学杂志 28 2467]

    [9]

    Tang J, Rangayyan R M, Xu J, Naqa I El, Yang Y Y 2009 IEEE Trans. Inform. Technol. Biomed. 13 236

    [10]

    Jing H, Yang Y Y, Nishikawa R M 2011 Phys. Med. Biol. 56 1

    [11]

    Jiang J, Yao B, Wason A M 2007 Comput. Med. Imag. Graph. 31 49

    [12]

    Naqa I E, Yang Y Y, Wernick M N, Galatsanos N P, Nishikawa R M 2002 IEEE Trans. Med. Imag. 21 1552

    [13]

    Wei L, Yang Y Y, Nishikawa R M, Wernick M N, Edwards A 2005 IEEE Trans. Med. Imag. 24 1278

    [14]

    Tzikas D G, Likas A C, Galatsanos N P 2009 IEEE Trans. Neural Networks 20 926

    [15]

    Tipping M, Faul A 2003 Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics Key West, USA, January 3-6, 2003 p1

    [16]

    Kallergi M, Carney G M, Gaviria J 1999 Med. Phys. 26 267

    [17]

    Muller K R, Mika S, Ratsch G, Tsuda K, Scholkopf B 2001 IEEE Trans. Neural Networks 12 181

    [18]

    Bunch P C, Hamilton J F, Sanderson G K, Simmons A H 1978 J. Appl. Photogr. Eng. 4 166

    [19]

    Samuelson F W, Petrick N 2006 Proceedings of 3rd IEEE International Symposium On Biodedical Imaging Arlington, USA, April 4-6, 2006 p1312

    [20]

    Xing H Y, Qi Z D, Xu W 2012 Acta Phys. Sin. 61 240504 (in Chinese) [行鸿彦, 祁峥东, 徐伟 2012 61 240504]

  • [1] 刘俊, 姜其立, 帅麒麟, 李融武, 潘秋丽, 程琳, 王荣. 一种点光源的自适应束斑X射线衍射仪的研制.  , 2021, 70(1): 010701. doi: 10.7498/aps.70.20201228
    [2] 雍佳伟, 田雨, 许克峰, 饶长辉. 一种结合图像复原技术的自适应光学系统控制方法.  , 2020, 69(6): 068701. doi: 10.7498/aps.69.20191536
    [3] 郎利影, 陆佳磊, 于娜娜, 席思星, 王雪光, 张雷, 焦小雪. 基于深度学习的联合变换相关器光学图像加密系统去噪方法.  , 2020, 69(24): 244204. doi: 10.7498/aps.69.20200805
    [4] 李军, 后新燕. 基于指数加权-核在线序列极限学习机的混沌系统动态重构研究.  , 2019, 68(10): 100503. doi: 10.7498/aps.68.20190156
    [5] 梅英, 谭冠政, 刘振焘, 武鹤. 基于大脑情感学习模型和自适应遗传算法的混沌时间序列预测.  , 2018, 67(8): 080502. doi: 10.7498/aps.67.20172104
    [6] 冯维, 张福民, 王惟婧, 曲兴华. 基于数字微镜器件的自适应高动态范围成像方法及应用.  , 2017, 66(23): 234201. doi: 10.7498/aps.66.234201
    [7] 王岩, 王飞, 王挺峰, 谢京江. 基于自适应阈值的阵列激光三维点云配准.  , 2016, 65(24): 249501. doi: 10.7498/aps.65.249501
    [8] 李军, 李大超. 基于优化核极限学习机的风电功率时间序列预测.  , 2016, 65(13): 130501. doi: 10.7498/aps.65.130501
    [9] 李慧, 赵琳, 李亮. 基于贝叶斯压缩感知的周跳探测与修复方法.  , 2016, 65(24): 249101. doi: 10.7498/aps.65.249101
    [10] 唐舟进, 彭涛, 王文博. 一种基于相关分析的局域最小二乘支持向量机小尺度网络流量预测算法.  , 2014, 63(13): 130504. doi: 10.7498/aps.63.130504
    [11] 郑驰超, 彭虎, 韩志会. 互相关自适应加权的医学超声成像算法研究.  , 2014, 63(14): 148702. doi: 10.7498/aps.63.148702
    [12] 田中大, 高宪文, 石彤. 用于混沌时间序列预测的组合核函数最小二乘支持向量机.  , 2014, 63(16): 160508. doi: 10.7498/aps.63.160508
    [13] 李艳凤, 陈后金, 曹霖, 韩振中, 程琳. 基于哈希理论和线性近邻传递反馈的乳腺X线图像肿块检索方法.  , 2014, 63(20): 208701. doi: 10.7498/aps.63.208701
    [14] 孟庆芳, 陈月辉, 冯志全, 王枫林, 陈珊珊. 基于局域相关向量机回归模型的小尺度网络流量的非线性预测.  , 2013, 62(15): 150509. doi: 10.7498/aps.62.150509
    [15] 张军峰, 胡寿松. 基于多重核学习支持向量回归的混沌时间序列预测.  , 2008, 57(5): 2708-2713. doi: 10.7498/aps.57.2708
    [16] 张 荣, 徐振源. 用自适应脉冲微扰引导混沌系统到周期解.  , 2006, 55(10): 5070-5076. doi: 10.7498/aps.55.5070
    [17] 龚礼华. 基于自适应脉冲微扰实现混沌控制的研究.  , 2005, 54(8): 3502-3507. doi: 10.7498/aps.54.3502
    [18] 崔万照, 朱长纯, 保文星, 刘君华. 混沌时间序列的支持向量机预测.  , 2004, 53(10): 3303-3310. doi: 10.7498/aps.53.3303
    [19] 甘建超, 肖先赐. 混沌时间序列基于邻域点的非线性多步自适应预测.  , 2003, 52(12): 2995-3001. doi: 10.7498/aps.52.2995
    [20] 神经网络的自适应删剪学习算法及其应用.  , 2001, 50(4): 674-681. doi: 10.7498/aps.50.674
计量
  • 文章访问数:  6671
  • PDF下载量:  1045
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-01
  • 修回日期:  2013-01-29
  • 刊出日期:  2013-04-05

/

返回文章
返回
Baidu
map