-
蜂窝夹芯结构作为天线罩最常用的透波材料, 其电各向异性特征对电磁传输性能具有不可忽略的影响. 本文基于各向异性蜂窝夹芯材料对电磁波水平极化和垂直极化分量的有效介电常数, 建立了多层蜂窝夹芯材料的等效传输线网络传输方程, 并给出了其传输系数的计算公式.该计算公式由于考虑了材料的三维各向异性特征, 不仅理论上可以计算多层各向异性介质板对任意方向入射电磁波的传输系数, 而且能够揭示出材料方向角对传输性能的影响规律.同时, 通过传输线网络等效, 其计算效率远高于有限元等方法.数值算例表明, 本方法能够有效地揭示蜂窝夹芯材料的各向异性对其传输性能的影响, 计算结果在入射角为0°–80° 时与有限元法符合很好.Honeycomb sandwiches are widely used as electromagnetic transparent materials for radomes. However, the electric anisotropy has a significant influence on the transmission performance. This work aims to investigate the electromagnetic transmission characteristics of the anisotropic sandwich panel. First, we deduce the effective permittivity of multilayered anisotropic sandwich material in the respect of the horizontal polarization and the perpendicular polarization components of the incident wave. Second, the transmission line network method related to the multilayered homogeneous medium is improved to simulate the electromagnetic transmission through honeycomb sandwiches and to calculate the transmission ratio. As the proposed method takes into account the three-dimensional anisotropy of each slab, it can simulate the transmission of plane wave with arbitrary incident direction in multilayered anisotropy sandwich panels, moreover, it can reveal the influence of material orientation on the transmission characteristics. Since the multilayer configuration is simulated by transmission line network, the proposed method is far more efficient than the finite element method. Numerical experiments indicate that the influence of the electric anisotropy on the transmission performance of honeycomb sandwich materials can be well revealed. In an incident angle range between 0 and 80 degrees, the simulation results fit well to the results obtained by the finite element method.
[1] Wo D Z 2000 Encyclopedia of Composites (Beijing:Chemical Industry Press) p1054 (in Chinese) [沃丁柱 2000 复合材料大全 (北京:化学工业出版社) 第1054页]
[2] Chun H J, Shin H S 2003 Int. J. Modern Phys. B 17 1782
[3] Dou W B, Sun Z L 1996 J. Infrared Millim. Waves 15 229 (in Chinese) [窦文斌, 孙忠良 1996 红外与毫米波学报 15 229]
[4] Zhang K Q, Li D J 2001 Electromagnetic Theory for Microwaves and Optoelectronics (2nd Ed.) (Beijing:Publishing House of Electronics Industry) p482 (in Chinese) [张克潜, 李德杰 2001 微波与光电子学中的电磁理论(第二版)(北京:电子工业出版社) 第482页]
[5] Kong J A (translated by Wu Ji) 2003 Electromagnetic Wave Theory (Beijing:Electron Industry Press) p197 (in Chinese) [Kong J A著 (吴季等译) 2003 电磁波理论(北京:电子工业出版社) 第197页]
[6] Hu L B, Chui S T 2002 Phys. Rev. B 66 085108
[7] Li J, Dong J F 2012 Acta Phys. Sin. 61 114101 (in Chinese) [李杰, 董建峰 2012 61 114101]
[8] Wilson G A, Thiel D V 2003 Prog. Electromagnet. Res. PIER 43 143
[9] Luo S R, Lü B D 2003 Acta Phys. Sin. 52 3061 (in Chinese) [罗时荣, 吕百达 2003 52 3061]
[10] Huang Y C, Zhang T R, Chen S H, Song H Y, Li Y T, Zhang W L 2011 Acta Phys. Sin. 60 074212 (in Chinese) [黄永超, 张廷蓉, 陈森会, 宋宏远, 李艳桃, 张伟林 2011 60 074212]
[11] Hong Q Q, Yu Y Z, Cai Z S, Chen M S, Lin S D 2010 Acta Phys. Sin. 59 5235 (in Chinese) [洪清泉, 余燕忠, 蔡植善, 陈木生, 林顺达 2010 59 5235]
[12] Hong Q Q, Zhong W B, Yu Y Z, Cai Z S, Chen M S, Lin S D 2012 Acta Phys. Sin. 61 160302 (in Chinese) [洪清泉, 仲伟博, 余燕忠, 蔡植善, 陈木生, 林顺达 2012 61 160302]
[13] Baida F I, Boutria M, Oussaid R, van Labeke D 2011 Phys. Rev. B 84 035107
[14] Caballero B, García-Martín A, Cuevas J C 2012 Phys. Rev. B 85 245103
[15] Zheng H X, Ge D B 2000 Acta Phys. Sin. 49 1702 (in Chinese) [郑宏兴, 葛德彪2000 49 1702]
[16] Yang L X, Ge D B, Wei B 2007 Acta Phys. Sin. 56 4509 (in Chinese) [杨利霞, 葛德彪, 魏兵 2007 56 4509]
[17] Yang L X, Xie Y T, Kong W, Yu P P, Wang G 2010 Acta Phys. Sin. 59 6089 (in Chinese) [杨利霞, 谢应涛, 孔娃, 于萍萍, 王刚 2010 59 6089]
[18] Oraizi H, Afsahi M 2007 Prog. Electromagnet. Res. PIER 74 217
[19] Tang X G, Zhang W H, Bassir D H 2011 Advances in Heterogeneous Material Mechanics-3rd International Conference on Heterogeneous Material Mechanics Shanghai, China, May 22-26, 2011 p389
-
[1] Wo D Z 2000 Encyclopedia of Composites (Beijing:Chemical Industry Press) p1054 (in Chinese) [沃丁柱 2000 复合材料大全 (北京:化学工业出版社) 第1054页]
[2] Chun H J, Shin H S 2003 Int. J. Modern Phys. B 17 1782
[3] Dou W B, Sun Z L 1996 J. Infrared Millim. Waves 15 229 (in Chinese) [窦文斌, 孙忠良 1996 红外与毫米波学报 15 229]
[4] Zhang K Q, Li D J 2001 Electromagnetic Theory for Microwaves and Optoelectronics (2nd Ed.) (Beijing:Publishing House of Electronics Industry) p482 (in Chinese) [张克潜, 李德杰 2001 微波与光电子学中的电磁理论(第二版)(北京:电子工业出版社) 第482页]
[5] Kong J A (translated by Wu Ji) 2003 Electromagnetic Wave Theory (Beijing:Electron Industry Press) p197 (in Chinese) [Kong J A著 (吴季等译) 2003 电磁波理论(北京:电子工业出版社) 第197页]
[6] Hu L B, Chui S T 2002 Phys. Rev. B 66 085108
[7] Li J, Dong J F 2012 Acta Phys. Sin. 61 114101 (in Chinese) [李杰, 董建峰 2012 61 114101]
[8] Wilson G A, Thiel D V 2003 Prog. Electromagnet. Res. PIER 43 143
[9] Luo S R, Lü B D 2003 Acta Phys. Sin. 52 3061 (in Chinese) [罗时荣, 吕百达 2003 52 3061]
[10] Huang Y C, Zhang T R, Chen S H, Song H Y, Li Y T, Zhang W L 2011 Acta Phys. Sin. 60 074212 (in Chinese) [黄永超, 张廷蓉, 陈森会, 宋宏远, 李艳桃, 张伟林 2011 60 074212]
[11] Hong Q Q, Yu Y Z, Cai Z S, Chen M S, Lin S D 2010 Acta Phys. Sin. 59 5235 (in Chinese) [洪清泉, 余燕忠, 蔡植善, 陈木生, 林顺达 2010 59 5235]
[12] Hong Q Q, Zhong W B, Yu Y Z, Cai Z S, Chen M S, Lin S D 2012 Acta Phys. Sin. 61 160302 (in Chinese) [洪清泉, 仲伟博, 余燕忠, 蔡植善, 陈木生, 林顺达 2012 61 160302]
[13] Baida F I, Boutria M, Oussaid R, van Labeke D 2011 Phys. Rev. B 84 035107
[14] Caballero B, García-Martín A, Cuevas J C 2012 Phys. Rev. B 85 245103
[15] Zheng H X, Ge D B 2000 Acta Phys. Sin. 49 1702 (in Chinese) [郑宏兴, 葛德彪2000 49 1702]
[16] Yang L X, Ge D B, Wei B 2007 Acta Phys. Sin. 56 4509 (in Chinese) [杨利霞, 葛德彪, 魏兵 2007 56 4509]
[17] Yang L X, Xie Y T, Kong W, Yu P P, Wang G 2010 Acta Phys. Sin. 59 6089 (in Chinese) [杨利霞, 谢应涛, 孔娃, 于萍萍, 王刚 2010 59 6089]
[18] Oraizi H, Afsahi M 2007 Prog. Electromagnet. Res. PIER 74 217
[19] Tang X G, Zhang W H, Bassir D H 2011 Advances in Heterogeneous Material Mechanics-3rd International Conference on Heterogeneous Material Mechanics Shanghai, China, May 22-26, 2011 p389
计量
- 文章访问数: 6367
- PDF下载量: 681
- 被引次数: 0