搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于天线辐射理论构建微波混沌腔的随机耦合模型

陆希成 王建国 刘钰 李爽 韩峰

引用本文:
Citation:

基于天线辐射理论构建微波混沌腔的随机耦合模型

陆希成, 王建国, 刘钰, 李爽, 韩峰

Based on antenna theory to establish the random coupling model of microwave chaotic cavities

Lu Xi-Cheng, Wang Jian-Guo, Liu Yu, Li Shuang, Han Feng
PDF
导出引用
  • 为了能够快速有效地求解电大复杂腔体(微波混沌腔)的电磁耦合问题, 文中采用统计电磁学方法研究了该类腔体电磁散射的统计特征. 首先, 根据天线辐射理论, 利用电磁场的本征模展开式建立了腔体耦合输入阻抗表达式. 其次, 利用波动混沌理论和概率统计方法进一步推导出了微波混沌腔的随机耦合模型. 该方法简单并且可以直接推导出三维模型. 最后, 构建了一个三维Sinai微波混沌腔并进行数值仿真实验, 其仿真实验结果与随机耦合模型计算结果的统计特征基本一致. 重要的是, 该模型与复杂腔体的细节特征无关, 能够快速有效地预测微波混沌腔的敏感耦合问题.
    To improve the ability of quickly and effectively resolving the coupling of electrically large complex cavities (microwave chaotic cavities), the statistical properties of the scattering from these cavities have been studied by using a statistical electromagnetics method. Firstly, based on the antenna theory, the input impedance expression of cavities is established by using the expanded electromagnetic eigenmode expression. Secondly, the random coupling model (RCM) is introduced from wave chaos theory and statistical method about microwave chaotic cavities. It is simply to use this method to directly obtain the three-dimensional model. Lastly, the three-dimensional Sinai microwave chaotic cavity is designed, and used to carry out the numerical experiment. Their statistical properties obtained are agreed well with one-another between the numerical result and RCM one. Importantly, the RCM, which is a very good method to be able to quickly predict the sensitivity of coupling about the microwave chaotic cavities, is independent of the details of the cavities.
    • 基金项目: 国家自然科学基金(批准号: 61231003)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61231003).
    [1]

    Ladbury J M, Lehman T H, Koepke G H 2002 IEEE International Symposium on Electromagnetic Compatibility, Minneapolis, Minnesota, August 19-23, 2002 p684

    [2]

    Jie Q L, Xu G O 1995 Chin. Phys. 4 641

    [3]

    Hemmady S, Hart J, Zheng X, Antonsen T M, Ott E, Anlage S M 2006 Phys. Rev. B 74 036213

    [4]

    Holland R, John R 1998 IEEE Trans. on Electromagnetic Compatibility 40 311

    [5]

    Naus H W L 2008 IEEE Trans. on Electromagnetic Compatibility 50 316

    [6]

    Lehman T H 1993 Interaction Notes: IN 494

    [7]

    Kostas J G, Boverie B 1991 IEEE Trans. On Electromagnetic Compatibility 33 366

    [8]

    Price R H, Davis H T, Wenaas E P 1993 Phys. Rev. E 48 4716

    [9]

    Hill D A. P 1998 IEEE Trans. On Electromagnetic Compatibility 40 209

    [10]

    Hill D A, Ma M T, Ondrejka A R, Riddle B F, Crawford M L, Johnk R T 1994 IEEE Trans. on Electromagnetic Compatibility 36 169

    [11]

    Hill D A 1998 IEEE Trans. On Electromagnetic Compatibility 41 365

    [12]

    Stöckmann H J 1999 Quantum Chaos (New York: Cambridge University Press)

    [13]

    Lu J, Du M L 2004 Acta Phys. Sin. 53 2450 (in Chinese) [陆军, 杜孟利 2004 53 2450]

    [14]

    Xu X Y, Gao S, Guo W H, Zhang Y H, Lin S L 2006 Chin. Phys. Lett. 23 765

    [15]

    Zheng X, Antonsen T M, Ott E 2006 Electromagnetics 26 3

    [16]

    Zheng X, Antonsen T M, Ott E 2006 Electromagnetics 26 27

    [17]

    Hemmady S, Zheng X, Hart J, Antonson T M, Ott E, Anlage S M 2006 Phys. Rev. E 74 036213

    [18]

    Hemmady S, Antonson T M, Ott E, Anlage S M 2012 IEEE Trans. On Electromagnetic Compatibility pp 99

    [19]

    Yan E Y, Meng F B, Ma H K 2010 Acta Phys. Sin. 59 1568 (in Chinese) [闫二艳, 孟凡宝, 马弘舸 2010 59 1568]

    [20]

    Antonson T M, Gradoni G, Anlage S. Ott E 2011 IEEE EMC Symposium, Long Beach, CA, August 14-19, 2011

    [21]

    Gradoni G, Yeh J-H, Antonson T M, Anlage S. Ott E 2011 IEEE EMC Symposium, Long Beach, CA, August 14-19, 2011

    [22]

    Hart J A, Antonsen T M, Ott E 2009 Phys. Rev. E 79 016208

    [23]

    Hart J A, Antonsen T M, Ott E 2009 Phys. Rev. E 80 041109

    [24]

    Yeh J H, Hart J A, Bradshaw E, Antonsen T M, Ott E, Anlage S M 2010 Phys. Rev. E 82 041114

    [25]

    Yeh J H, Antonsen T M, Ott E, Anlage S M 2012 Phys. Rev. E 85 015202(R)

    [26]

    Li M Y, Hummer K A, Chang K 1991 IEEE Trans. on Antennas and Propagation 39 1158

    [27]

    Warne L K, Lee K S H, Hudson H G, Johnson W A, Jorgenson R E, Stronach S L 2003 IEEE Trans. on Antennas and Propagation 51 978

    [28]

    Jackson J D 1999 Classical Electrodynamics (Third Edition)(John Wiley & Sons. Inc.)

    [29]

    Lu X C, Wang J G, Han F, Liu Y 2011 High Power Laser and Particle Beams 23 2167 (in Chinese) [陆希成, 王建国, 韩峰, 刘钰 2011 强激光与粒子束 23 2167]

    [30]

    Lu X C, Wang J G, Han F, Liu Y 2011 High Power Laser and Particle Beams 23 3367 (in Chinese) [陆希成, 王建国, 韩峰, 刘钰 2011 强激光与粒子束 23 3367]

    [31]

    Mehta M L 2006 Random Matrices (Third Edition) (Singapore: Elsevier (Singapore) Pte Ltd)

  • [1]

    Ladbury J M, Lehman T H, Koepke G H 2002 IEEE International Symposium on Electromagnetic Compatibility, Minneapolis, Minnesota, August 19-23, 2002 p684

    [2]

    Jie Q L, Xu G O 1995 Chin. Phys. 4 641

    [3]

    Hemmady S, Hart J, Zheng X, Antonsen T M, Ott E, Anlage S M 2006 Phys. Rev. B 74 036213

    [4]

    Holland R, John R 1998 IEEE Trans. on Electromagnetic Compatibility 40 311

    [5]

    Naus H W L 2008 IEEE Trans. on Electromagnetic Compatibility 50 316

    [6]

    Lehman T H 1993 Interaction Notes: IN 494

    [7]

    Kostas J G, Boverie B 1991 IEEE Trans. On Electromagnetic Compatibility 33 366

    [8]

    Price R H, Davis H T, Wenaas E P 1993 Phys. Rev. E 48 4716

    [9]

    Hill D A. P 1998 IEEE Trans. On Electromagnetic Compatibility 40 209

    [10]

    Hill D A, Ma M T, Ondrejka A R, Riddle B F, Crawford M L, Johnk R T 1994 IEEE Trans. on Electromagnetic Compatibility 36 169

    [11]

    Hill D A 1998 IEEE Trans. On Electromagnetic Compatibility 41 365

    [12]

    Stöckmann H J 1999 Quantum Chaos (New York: Cambridge University Press)

    [13]

    Lu J, Du M L 2004 Acta Phys. Sin. 53 2450 (in Chinese) [陆军, 杜孟利 2004 53 2450]

    [14]

    Xu X Y, Gao S, Guo W H, Zhang Y H, Lin S L 2006 Chin. Phys. Lett. 23 765

    [15]

    Zheng X, Antonsen T M, Ott E 2006 Electromagnetics 26 3

    [16]

    Zheng X, Antonsen T M, Ott E 2006 Electromagnetics 26 27

    [17]

    Hemmady S, Zheng X, Hart J, Antonson T M, Ott E, Anlage S M 2006 Phys. Rev. E 74 036213

    [18]

    Hemmady S, Antonson T M, Ott E, Anlage S M 2012 IEEE Trans. On Electromagnetic Compatibility pp 99

    [19]

    Yan E Y, Meng F B, Ma H K 2010 Acta Phys. Sin. 59 1568 (in Chinese) [闫二艳, 孟凡宝, 马弘舸 2010 59 1568]

    [20]

    Antonson T M, Gradoni G, Anlage S. Ott E 2011 IEEE EMC Symposium, Long Beach, CA, August 14-19, 2011

    [21]

    Gradoni G, Yeh J-H, Antonson T M, Anlage S. Ott E 2011 IEEE EMC Symposium, Long Beach, CA, August 14-19, 2011

    [22]

    Hart J A, Antonsen T M, Ott E 2009 Phys. Rev. E 79 016208

    [23]

    Hart J A, Antonsen T M, Ott E 2009 Phys. Rev. E 80 041109

    [24]

    Yeh J H, Hart J A, Bradshaw E, Antonsen T M, Ott E, Anlage S M 2010 Phys. Rev. E 82 041114

    [25]

    Yeh J H, Antonsen T M, Ott E, Anlage S M 2012 Phys. Rev. E 85 015202(R)

    [26]

    Li M Y, Hummer K A, Chang K 1991 IEEE Trans. on Antennas and Propagation 39 1158

    [27]

    Warne L K, Lee K S H, Hudson H G, Johnson W A, Jorgenson R E, Stronach S L 2003 IEEE Trans. on Antennas and Propagation 51 978

    [28]

    Jackson J D 1999 Classical Electrodynamics (Third Edition)(John Wiley & Sons. Inc.)

    [29]

    Lu X C, Wang J G, Han F, Liu Y 2011 High Power Laser and Particle Beams 23 2167 (in Chinese) [陆希成, 王建国, 韩峰, 刘钰 2011 强激光与粒子束 23 2167]

    [30]

    Lu X C, Wang J G, Han F, Liu Y 2011 High Power Laser and Particle Beams 23 3367 (in Chinese) [陆希成, 王建国, 韩峰, 刘钰 2011 强激光与粒子束 23 3367]

    [31]

    Mehta M L 2006 Random Matrices (Third Edition) (Singapore: Elsevier (Singapore) Pte Ltd)

  • [1] 郑赟杰, 王晨阳, 谢双媛, 许静平, 羊亚平. 含多个相干耦合人工原子的单模腔的输入输出特性.  , 2022, 71(24): 244204. doi: 10.7498/aps.71.20221456
    [2] 陈旭凡, 杨强, 胡小会. 过渡金属原子掺杂对二维CrBr3电磁学性能的调控.  , 2021, 70(24): 247401. doi: 10.7498/aps.70.20210936
    [3] 蒲明博, 王长涛, 王彦钦, 罗先刚. 衍射极限尺度下的亚波长电磁学.  , 2017, 66(14): 144101. doi: 10.7498/aps.66.144101
    [4] 肖美霞, 梁尤平, 陈玉琴, 刘萌. 应变对两层半氢化氮化镓薄膜电磁学性质的调控机理研究.  , 2016, 65(2): 023101. doi: 10.7498/aps.65.023101
    [5] 刘庆喜, 潘炜, 张力月, 李念强, 阎娟. 基于外光注入互耦合垂直腔面发射激光器的混沌随机特性研究.  , 2015, 64(2): 024209. doi: 10.7498/aps.64.024209
    [6] 朱艳菊, 江月松, 华厚强, 张崇辉, 辛灿伟. 热防护层覆盖弹体目标雷达散射截面的修正的等效电流近似法和图形计算电磁学法分析.  , 2014, 63(24): 244101. doi: 10.7498/aps.63.244101
    [7] 朱艳菊, 江月松, 张崇辉, 辛灿伟. 应用改进的物理光学法和图形计算电磁学近似算法快速计算导体目标电磁散射特性.  , 2014, 63(16): 164202. doi: 10.7498/aps.63.164202
    [8] 谢林柏, 周志刚, 张正道. 输入受限的混沌系统同步控制.  , 2013, 62(18): 188702. doi: 10.7498/aps.62.188702
    [9] 何昉明, 罗积润, 朱敏, 郭炜. Chodorow型耦合腔慢波结构色散特性和耦合阻抗理论分析.  , 2013, 62(17): 174101. doi: 10.7498/aps.62.174101
    [10] 林敏, 黄咏梅. 双稳系统随机共振的能量输入机理.  , 2012, 61(22): 220205. doi: 10.7498/aps.61.220205
    [11] 胡小会, 许俊敏, 孙立涛. 金掺杂锯齿型石墨烯纳米带的电磁学特性研究.  , 2012, 61(4): 047106. doi: 10.7498/aps.61.047106
    [12] 陆志新, 曹力. 输入方波信号的过阻尼谐振子的随机共振.  , 2011, 60(11): 110501. doi: 10.7498/aps.60.110501
    [13] 张建忠, 王安帮, 张明江, 李晓春, 王云才. 反馈相位随机调制消除混沌半导体激光器的外腔长信息.  , 2011, 60(9): 094207. doi: 10.7498/aps.60.094207
    [14] 鲍丙豪, 骆英. 有限输入阻抗下压电/磁伸层叠材料磁电效应理论及实验.  , 2011, 60(1): 017508. doi: 10.7498/aps.60.017508
    [15] 廖 旭, 任学藻, 周自刚. 耦合孔对微波腔的影响研究.  , 2008, 57(7): 3949-3953. doi: 10.7498/aps.57.3949
    [16] 梁志伟, 孙海龙, 王之江, 徐 杰, 徐跃民. 等离子体天线输入阻抗测量及分析.  , 2008, 57(7): 4292-4297. doi: 10.7498/aps.57.4292
    [17] 李正红, 孟凡宝, 常安碧, 胡克松. 利用场耦合理论研究开放微波谐振腔.  , 2004, 53(11): 3627-3631. doi: 10.7498/aps.53.3627
    [18] 梁文青, 储开芹, 张智明, 谢绳武. 超冷V型三能级原子注入的微波激射:原子相干性对腔场光子统计的影响.  , 2001, 50(12): 2345-2355. doi: 10.7498/aps.50.2345
    [19] 王嘉赋, 刘锋, 王均义, 陈光, 王炜. 随机共振系统输入阈值的频率特性.  , 1997, 46(12): 2305-2312. doi: 10.7498/aps.46.2305
    [20] 黄宏嘉. 微波强耦合论.  , 1962, 18(1): 27-55. doi: 10.7498/aps.18.27
计量
  • 文章访问数:  6833
  • PDF下载量:  495
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-19
  • 修回日期:  2012-11-20
  • 刊出日期:  2013-04-05

/

返回文章
返回
Baidu
map