搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

心脏老化和收缩对螺旋波动力学的影响研究

刘海英 杨翠云 唐国宁

引用本文:
Citation:

心脏老化和收缩对螺旋波动力学的影响研究

刘海英, 杨翠云, 唐国宁

Effects of the aging and systole of heart on the dynamics of spiral wave

Liu Hai-Ying, Yang Cui-Yun, Tang Guo-Ning
PDF
导出引用
  • 通过用Greenberg-Hasting元胞自动机模型的邻域半径和激发阈值的增大来模拟心脏老化, 用邻域半径交替变化代替心脏收缩与舒张, 数值模拟研究了心脏老化和有规律收缩对螺旋波动力学的影响. 结果表明: 心脏老化会导致螺旋波漫游和不能产生螺旋波, 既可以使螺旋波波长缩短和螺旋波周期维持不变, 也可以使螺旋波的波长变长和周期增大; 在心脏老化和有规律收缩共同作用下, 系统可出现不同形状的螺旋波斑图、螺旋波发生破碎和消失等现象, 给出了心力衰竭、心颤、死亡的发生概率, 这些结果与流行病相关调查结果基本符合.
    In this paper, the effects of the aging and systole of heart on the dynamics of spiral wave are studied by using the Greenberg-Hasting cellular automaton model. In this model the neighbor radius and the excitation threshold are increased in order to simulate the aging of heart, and the neighbor radius is changed alternately to simulate heart systole and diastole. The results show that the aging of heart can induce some influences on spiral wave, such as make spiral wave meandering, and even cause spiral wave to disappear; in addition, it can shorten the wavelength and keep period fixed, and also elongate the wavelength and increase the period of spiral wave. If the aging and the regular systole of heart take place at the same time, we observe some phenomena, such as different spiral wave patterns, the spiral wave breakup and disappearance. We also obtain the probabilities of heart failure, ventricular fibrillation and death. These results are essentially consistent with the results of relevant epidemiological survey.
    • 基金项目: 国家自然科学基金(批准号:11165004) 和广西教育厅科研项目(编号:201106LX699)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11165004), and the Education Department of Guangxi Zhuang Autonomous Region, China (Grant No. 201106LX699).
    [1]

    Zaikin A N, Zhabotinsky A M 1970 Nature 225 535

    [2]

    Bär M, Gottschalk N, Eiswirth M, Ertl G 1994 J. Chem. Phys. 100 1202

    [3]

    Witkowski F X, Leon L J, Penkoske P A, Giles W R, Spanoll M L, Ditto W L, Winfree A T 1998 Nature 392 78

    [4]

    Fenton F H, Cherry E M, Hasting H M, Evans S J 2002 Chaos 12 852

    [5]

    Qian Y, Song X Y, Shi W, Chen G Z, Xue Y, 2006 Acta Phys. Sin. 55 4420 (in Chinese) [钱郁, 宋宣玉, 时伟, 陈光旨, 薛郁 2006 55 4420]

    [6]

    Liu F C, Wang X F, Li X C, Dong L F 2007 Chin. Phys. 16 2640

    [7]

    Yin X Z, Liu Y 2008 Acta Phys. Sin. 57 6844 (in Chinese) [尹小舟, 刘勇 2008 57 6844]

    [8]

    Ma J, Jin W Y, Yi M, Li Y L 2008 Acta Phys. Sin. 57 2832 (in Chinese) [马 军, 靳伍银, 易 鸣, 李延龙 2008 57 2832]

    [9]

    Liu Y, Li S R, Ma J, Ying H P 2009 Chin. Phys. B 18 98

    [10]

    Deng M Y, Tang G N, Kong L J, Liu M R 2010 Acta Phys. Sin. 59 2339 (in Chinese) [邓敏艺, 唐国宁, 孔令江, 刘慕仁 2010 59 2339]

    [11]

    Bär M, Eiswirth M 1993 Phys. Rev. E 48 1635

    [12]

    Dai Y, Tang G N 2009 Acta Phys. Sin. 58 1491 (in Chinese) [戴瑜, 唐国宁 2009 58 1491]

    [13]

    Wang S H, Choe W G, Lee K J 2000 Phys. Rev. E 62 4799

    [14]

    Tang D N, Tang G N 2010 Acta Phys. Sin. 59 2319 (in Chinese) [唐冬妮, 唐国宁 2010 59 2319]

    [15]

    Gan Z N, Ma J, Zhang G Y, Chen Y 2008 Acta Phys. Sin. 57 5400 (in Chinese) [甘正宁, 马军, 张国勇, 陈勇2008 57 5400]

    [16]

    Ma J, Wang C N, Jin W Y, Li Y L, Pu Z S 2008 Chin. Phys. B 17 2844

    [17]

    Yang J Z, Zhang M 2005 Chin. Phys. Lett. 22 3195

    [18]

    Wei H M, Tang G N 2011 Acta Phys. Sin. 60 030501 (in Chinese) [韦海明, 唐国宁 2011 60 030501]

    [19]

    Zhang H, Ruan X S, Hu B, Ouyang Q 2004 Phys. Rev. E 70 016212

    [20]

    Zhang H, Li B W, Sheng Z M, Cao Z J, Hu G 2006 Europhys. Lett. 76 1109

    [21]

    Olivetti G, Melissari M, Capasso J M, Anversa P 1991 Circ. Res. 68 1560

    [22]

    Greenberg J M, Hastings S P 1978 SIAM J. Appl. Math. 34 515

    [23]

    Kohl P, Camelliti P, Burton F L, Smith G L 2005 J. Electrocardiology 38 45

    [24]

    Gu D F, Huang G Y, He J, Wu X G, Duan X F, Stephen M M, Paul K W 2003 Chin. J. Cardiology 31 3 ( in Chinese) [顾东风, 黄广勇, 何江, 吴锡桂, 段秀芳, Stephen M M, Paul K W 2003 中华心血管病杂志 31 3]

    [25]

    Wang L 2011 South China Journal of Cardiovascular Diseases 17 178 (in Chinese) [王林 2011 岭南心血管病杂志 17 178]

    [26]

    Zhou Z Q, Hu D Y, Chen J, Zhang R H, Li K B, Zhao X L 2004 Chin. J. Intern. Med. 43 491 (in Chinese) [周自强, 胡大一, 陈捷, 张仁汉, 李奎宝, 赵秀丽 2004 中华内科杂志 43 491]

    [27]

    Kannel W B, Ho K, Thom T 1994 Br. Heart J. 72 (Supplement) S 3

  • [1]

    Zaikin A N, Zhabotinsky A M 1970 Nature 225 535

    [2]

    Bär M, Gottschalk N, Eiswirth M, Ertl G 1994 J. Chem. Phys. 100 1202

    [3]

    Witkowski F X, Leon L J, Penkoske P A, Giles W R, Spanoll M L, Ditto W L, Winfree A T 1998 Nature 392 78

    [4]

    Fenton F H, Cherry E M, Hasting H M, Evans S J 2002 Chaos 12 852

    [5]

    Qian Y, Song X Y, Shi W, Chen G Z, Xue Y, 2006 Acta Phys. Sin. 55 4420 (in Chinese) [钱郁, 宋宣玉, 时伟, 陈光旨, 薛郁 2006 55 4420]

    [6]

    Liu F C, Wang X F, Li X C, Dong L F 2007 Chin. Phys. 16 2640

    [7]

    Yin X Z, Liu Y 2008 Acta Phys. Sin. 57 6844 (in Chinese) [尹小舟, 刘勇 2008 57 6844]

    [8]

    Ma J, Jin W Y, Yi M, Li Y L 2008 Acta Phys. Sin. 57 2832 (in Chinese) [马 军, 靳伍银, 易 鸣, 李延龙 2008 57 2832]

    [9]

    Liu Y, Li S R, Ma J, Ying H P 2009 Chin. Phys. B 18 98

    [10]

    Deng M Y, Tang G N, Kong L J, Liu M R 2010 Acta Phys. Sin. 59 2339 (in Chinese) [邓敏艺, 唐国宁, 孔令江, 刘慕仁 2010 59 2339]

    [11]

    Bär M, Eiswirth M 1993 Phys. Rev. E 48 1635

    [12]

    Dai Y, Tang G N 2009 Acta Phys. Sin. 58 1491 (in Chinese) [戴瑜, 唐国宁 2009 58 1491]

    [13]

    Wang S H, Choe W G, Lee K J 2000 Phys. Rev. E 62 4799

    [14]

    Tang D N, Tang G N 2010 Acta Phys. Sin. 59 2319 (in Chinese) [唐冬妮, 唐国宁 2010 59 2319]

    [15]

    Gan Z N, Ma J, Zhang G Y, Chen Y 2008 Acta Phys. Sin. 57 5400 (in Chinese) [甘正宁, 马军, 张国勇, 陈勇2008 57 5400]

    [16]

    Ma J, Wang C N, Jin W Y, Li Y L, Pu Z S 2008 Chin. Phys. B 17 2844

    [17]

    Yang J Z, Zhang M 2005 Chin. Phys. Lett. 22 3195

    [18]

    Wei H M, Tang G N 2011 Acta Phys. Sin. 60 030501 (in Chinese) [韦海明, 唐国宁 2011 60 030501]

    [19]

    Zhang H, Ruan X S, Hu B, Ouyang Q 2004 Phys. Rev. E 70 016212

    [20]

    Zhang H, Li B W, Sheng Z M, Cao Z J, Hu G 2006 Europhys. Lett. 76 1109

    [21]

    Olivetti G, Melissari M, Capasso J M, Anversa P 1991 Circ. Res. 68 1560

    [22]

    Greenberg J M, Hastings S P 1978 SIAM J. Appl. Math. 34 515

    [23]

    Kohl P, Camelliti P, Burton F L, Smith G L 2005 J. Electrocardiology 38 45

    [24]

    Gu D F, Huang G Y, He J, Wu X G, Duan X F, Stephen M M, Paul K W 2003 Chin. J. Cardiology 31 3 ( in Chinese) [顾东风, 黄广勇, 何江, 吴锡桂, 段秀芳, Stephen M M, Paul K W 2003 中华心血管病杂志 31 3]

    [25]

    Wang L 2011 South China Journal of Cardiovascular Diseases 17 178 (in Chinese) [王林 2011 岭南心血管病杂志 17 178]

    [26]

    Zhou Z Q, Hu D Y, Chen J, Zhang R H, Li K B, Zhao X L 2004 Chin. J. Intern. Med. 43 491 (in Chinese) [周自强, 胡大一, 陈捷, 张仁汉, 李奎宝, 赵秀丽 2004 中华内科杂志 43 491]

    [27]

    Kannel W B, Ho K, Thom T 1994 Br. Heart J. 72 (Supplement) S 3

  • [1] 潘军廷, 何银杰, 夏远勋, 张宏. 极化电场对可激发介质中螺旋波的控制.  , 2020, 69(8): 080503. doi: 10.7498/aps.69.20191934
    [2] 韦宾, 唐国宁, 邓敏艺. 具有早期后除极化现象的可激发系统中螺旋波破碎方式研究.  , 2018, 67(9): 090501. doi: 10.7498/aps.67.20172505
    [3] 刘伟波, 董丽芳. 介质阻挡放电中同心圆环斑图的产生机理.  , 2015, 64(24): 245202. doi: 10.7498/aps.64.245202
    [4] 李伟恒, 潘飞, 黎维新, 唐国宁. 非对称耦合两层可激发介质中的螺旋波动力学.  , 2015, 64(19): 198201. doi: 10.7498/aps.64.198201
    [5] 李伟恒, 黎维新, 潘飞, 唐国宁. 两层耦合可激发介质中螺旋波转变为平面波.  , 2014, 63(20): 208201. doi: 10.7498/aps.63.208201
    [6] 袁国勇, 张焕, 王光瑞. 多可激性障碍下的螺旋波动力学.  , 2013, 62(16): 160502. doi: 10.7498/aps.62.160502
    [7] 陈醒基, 乔成功, 王利利, 周振玮, 田涛涛, 唐国宁. 间接延迟耦合可激发介质中螺旋波的演化.  , 2013, 62(12): 128201. doi: 10.7498/aps.62.128201
    [8] 邝玉兰, 唐国宁. 心脏中的螺旋波和时空混沌的抑制研究.  , 2012, 61(10): 100504. doi: 10.7498/aps.61.100504
    [9] 陈醒基, 田涛涛, 周振玮, 胡一博, 唐国宁. 通过被动介质耦合的两螺旋波的同步.  , 2012, 61(21): 210509. doi: 10.7498/aps.61.210509
    [10] 钱郁. 时空调制对可激发介质螺旋波波头动力学行为影响及控制研究.  , 2012, 61(15): 158202. doi: 10.7498/aps.61.158202
    [11] 黎广钊, 陈永淇, 唐国宁. 三层弱循环耦合可激发介质中螺旋波动力学.  , 2012, 61(2): 020502. doi: 10.7498/aps.61.020502
    [12] 周振玮, 陈醒基, 田涛涛, 唐国宁. 耦合可激发介质中螺旋波的控制研究.  , 2012, 61(21): 210506. doi: 10.7498/aps.61.210506
    [13] 董丽芳, 白占国, 贺亚峰. 非均匀可激发介质中的稀密螺旋波.  , 2012, 61(12): 120509. doi: 10.7498/aps.61.120509
    [14] 韦海明, 唐国宁. 交替行为对螺旋波影响的数值模拟研究.  , 2011, 60(4): 040504. doi: 10.7498/aps.60.040504
    [15] 韦海明, 唐国宁. 离散可激发介质中早期后去极化对螺旋波影响的数值研究.  , 2011, 60(3): 030501. doi: 10.7498/aps.60.030501
    [16] 戴瑜, 唐国宁. 离散可激发介质激发性降低的几种起因.  , 2009, 58(3): 1491-1496. doi: 10.7498/aps.58.1491
    [17] 甘正宁, 马 军, 张国勇, 陈 勇. 小世界网络上螺旋波失稳的研究.  , 2008, 57(9): 5400-5406. doi: 10.7498/aps.57.5400
    [18] 张国勇, 马 军, 甘正宁, 陈 勇. 非均匀可激介质中的螺旋波.  , 2008, 57(11): 6815-6823. doi: 10.7498/aps.57.6815
    [19] 尹小舟, 刘 勇. 非连续反馈控制激发介质中的螺旋波.  , 2008, 57(11): 6844-6851. doi: 10.7498/aps.57.6844
    [20] 马 军, 靳伍银, 李延龙, 陈 勇. 随机相位扰动抑制激发介质中漂移的螺旋波.  , 2007, 56(4): 2456-2465. doi: 10.7498/aps.56.2456
计量
  • 文章访问数:  6721
  • PDF下载量:  739
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-07
  • 修回日期:  2012-07-21
  • 刊出日期:  2013-01-05

/

返回文章
返回
Baidu
map