搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

饱和砂岩的滞弹性弛豫衰减特征及微观机理的探索

席道瑛 徐松林 刘永贵 杜赟

引用本文:
Citation:

饱和砂岩的滞弹性弛豫衰减特征及微观机理的探索

席道瑛, 徐松林, 刘永贵, 杜赟

Viscoelastic relaxation attenuation property for saturated sandstones and corresponding investigation of micro-scale mechanism

Xi Dao-Ying, Xu Song-Lin, Liu Yong-Gui, Du Yun
PDF
导出引用
  • 应用Metravib热机械分析仪,以饱和岩石进行正弦波加载的方式, 分别对三种不同孔隙度的泵油饱和彭山砂岩、泵油和甘油饱和自贡长石砂岩进行了衰减实验研究,得到衰减的热弛豫规律.据此规律求得它们的激活能和原子振动频率, 其激活能和原子的振动频率比间隙原子的激活能和振动的频率低, 此现象用饱和砂岩中产生的缺陷原子簇的整体振动比单个或孤立的原子的振动频率低做出了解释. 在饱和岩石的晶粒间界缺陷处参与扩散的是固体原子、液体及气体原子. 并得出随孔隙度和黏滞系数增大,衰减强度和激活能增大,原子的振动频率增高,弛豫时间减小的结论. 在正弦波应力作用下,由多种矿物晶体胶结而成的饱和砂岩是一种多晶、多相的固体, 由于内部结构复杂、缺陷广布,产生弛豫衰减是普遍现象.砂岩中存在点缺陷、位错、 晶界及孪晶界面等许多缺陷及缺陷间的相互作用都可以产生弛豫型衰减峰. 用饱和砂岩中特有的饱和液体及砂岩内部结构的复杂性解释了饱和砂岩的衰减机理, 很自然地将其宏观衰减特征与微观结构紧密连在一起.饱和砂岩中的各种缺陷、 相界等会导致多重弛豫,使它们的弛豫衰减峰变宽,分布参数增大.这项研究既具有理论意义,也具有实用价值.
    Attenuation experiments are performed by Metravib dynamic mechanical analyzer with sine wave loading style to study the viscoelastic relaxation property of pump-oil saturated and glycerol saturated Pengshan sandstone and Zigong arkoses with three kinds of porosities. Based on the thermal relaxation regularities, the activation energies and the atomic vibration frequencies of relaxation attenuation peaks for three kinds of saturated sandstones are evaluated. The results show that activation energies and atomic vibrations frequencies of sandstone samples are lower than those of interstitial atoms. The overall vibration behavior of atomic cluster with defects can be used to explain why vibration frequencies are low in samples. Besides the solid atoms, the gas and liquid atoms filled in defects contribute greatly to overall vibration of sample. Saturated sandstone, cemented by a combination of mineral crystals, is a polycrystalline, multiphase solid with internal complex structure and widespread defects, and it easily takes on thermal relaxation property under sine wave loading. Such flaws and defects as point defects, dislocation and grain boundary in samples and their interaction interaction can produce relaxation attenuation peak. To explain the relaxation mechanism by saturated liquid and internal structure of the sandstone, it is natural to relate the attenuation characteristics to its macro-meso-structure. It is notable that when taking the defects, multiple phase boundary into consideration, a new interesting phenomenon appears, there produces multi relaxation with broader peak and more widely distributed parameter. This investigation is helpful to study theoretical model and seismic data interpretation.
    • 基金项目: 国家自然科学基金(批准号: 40874093)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 40874093).
    [1]

    Winkler K W, Nur A 1982 Geophysics 47 1

    [2]

    Jones T D 1986 Geophysics 51 1939

    [3]

    Jones T, Nur A 1983 Geophys. Res. Lett. 10 140

    [4]

    Xi D Y, Liu X Y, Zhang C Y 2007 Pure. Appl. Geophys. 164 2157

    [5]

    Guyer R A, TenCate J, Johnson P 1999 Phys. Rev. Lett. 82 3280

    [6]

    Johnson P A, McCall K R 1994 Geophys. Res. Lett. 21 97

    [7]

    Xi D Y, Chen Y P, Tao Y Z, Liu Y C 2006 Chinese J. Rock Mech. Engng. 25 1086 (in Chinese) [席道瑛, 陈运平, 陶月赞, 刘亚晨 2006 岩石力学与工程学报 25 1086]

    [8]

    Xi D Y, Xu S L, Xi J, Yi L K, Du Y 2011 Chinese J. Geophys. 54 2302 (in Chinese) [席道瑛, 徐松林, 席军, 易良坤, 杜赟 2011 地球 54 2302]

    [9]

    Tutuncu A N, Podio A L, Gregory A R 1998 Geophysics 63 195

    [10]

    McCall K R, Guyer R A 1994 J. Geophys. Res. 99 23887

    [11]

    van Den Abeele K E A, Carmeliet J, Johnson P A, Zinszner B 2002 J. Geophys. Res. 107 2121

    [12]

    Carmeliet J, van Den Abeele K E A 2001 Fourth International Conference on Fracture Mechanics of Concrete and Concrete Structures Cachan, France, 28 May 2011 pp11-18

    [13]

    Carmeliet J, Koen E A, van Den Abeele K E A 2002 Geophys. Res. Lett. 29 1144

    [14]

    Xi D Y, Du Y, Yi L K, Wan X L 2009 Chinese J. Rock Mech. Engng. 28 687 (in Chinese) [席道瑛, 杜赟, 易良坤, 宛新林 2009 岩石力学与工程学报 28 687]

    [15]

    Pennington W D 1997 The Leading EDGE 16 241

    [16]

    Mavko G M, Nur A 1979 Geophysics 44 161

    [17]

    O'Connell R J 1983 Am. Inst. Phys. Conference on Physics and Chemistry of Porous Media, Schlumberger-Doll Research, Johnson D L, Sen P N (Ed.) Am. Inst. Phys: pp166-176

    [18]

    Xi D Y, Yi L K, Tian X Y 2003 Chinese J. Geophysics 46 814

    [19]

    Xi D Y, Xu S L, Du Y, Yi L K 2011 J. Appl. Geophys. 71 289

    [20]

    Du Y, Xi D Y, Xu S L 2009 Chinese J. Geophys. 52 3051 (in Chinese) [杜赟, 席道瑛, 徐松林 2009 地球 52 3051]

    [21]

    Zinszner B, Johnson P A, Rasolofosaon P N J 1997 J. Geophys. Res. 101 8105

    [22]

    Xi D Y, Liu B, Yi L K 2000 Chinese J. Geophys. 43 873

    [23]

    Xi D Y, Liu B, Tian X Y 2002 Chinese J. Geophys. 45 101

    [24]

    Vo-Thanh D 1995 Geophys. J. Int. 121 737

    [25]

    Batzle M L, Han D H, Hofmann R 2006 Geophysics 71 N1

    [26]

    Batzle M, Han D, Castagna J 1996 Soc. Expl. Geoph. Expanded Abstracts 1687

    [27]

    O'Doherty R F, Anstey N A 1971 Geophys. Prospecting 19 430

    [28]

    Huang K 1979 Solid Physics (Beijing: People's Education Press) pp66-67 (in Chinese) [黄昆 1979 固体物理学 (北京:人民教育出版社) 第66—67页]

  • [1]

    Winkler K W, Nur A 1982 Geophysics 47 1

    [2]

    Jones T D 1986 Geophysics 51 1939

    [3]

    Jones T, Nur A 1983 Geophys. Res. Lett. 10 140

    [4]

    Xi D Y, Liu X Y, Zhang C Y 2007 Pure. Appl. Geophys. 164 2157

    [5]

    Guyer R A, TenCate J, Johnson P 1999 Phys. Rev. Lett. 82 3280

    [6]

    Johnson P A, McCall K R 1994 Geophys. Res. Lett. 21 97

    [7]

    Xi D Y, Chen Y P, Tao Y Z, Liu Y C 2006 Chinese J. Rock Mech. Engng. 25 1086 (in Chinese) [席道瑛, 陈运平, 陶月赞, 刘亚晨 2006 岩石力学与工程学报 25 1086]

    [8]

    Xi D Y, Xu S L, Xi J, Yi L K, Du Y 2011 Chinese J. Geophys. 54 2302 (in Chinese) [席道瑛, 徐松林, 席军, 易良坤, 杜赟 2011 地球 54 2302]

    [9]

    Tutuncu A N, Podio A L, Gregory A R 1998 Geophysics 63 195

    [10]

    McCall K R, Guyer R A 1994 J. Geophys. Res. 99 23887

    [11]

    van Den Abeele K E A, Carmeliet J, Johnson P A, Zinszner B 2002 J. Geophys. Res. 107 2121

    [12]

    Carmeliet J, van Den Abeele K E A 2001 Fourth International Conference on Fracture Mechanics of Concrete and Concrete Structures Cachan, France, 28 May 2011 pp11-18

    [13]

    Carmeliet J, Koen E A, van Den Abeele K E A 2002 Geophys. Res. Lett. 29 1144

    [14]

    Xi D Y, Du Y, Yi L K, Wan X L 2009 Chinese J. Rock Mech. Engng. 28 687 (in Chinese) [席道瑛, 杜赟, 易良坤, 宛新林 2009 岩石力学与工程学报 28 687]

    [15]

    Pennington W D 1997 The Leading EDGE 16 241

    [16]

    Mavko G M, Nur A 1979 Geophysics 44 161

    [17]

    O'Connell R J 1983 Am. Inst. Phys. Conference on Physics and Chemistry of Porous Media, Schlumberger-Doll Research, Johnson D L, Sen P N (Ed.) Am. Inst. Phys: pp166-176

    [18]

    Xi D Y, Yi L K, Tian X Y 2003 Chinese J. Geophysics 46 814

    [19]

    Xi D Y, Xu S L, Du Y, Yi L K 2011 J. Appl. Geophys. 71 289

    [20]

    Du Y, Xi D Y, Xu S L 2009 Chinese J. Geophys. 52 3051 (in Chinese) [杜赟, 席道瑛, 徐松林 2009 地球 52 3051]

    [21]

    Zinszner B, Johnson P A, Rasolofosaon P N J 1997 J. Geophys. Res. 101 8105

    [22]

    Xi D Y, Liu B, Yi L K 2000 Chinese J. Geophys. 43 873

    [23]

    Xi D Y, Liu B, Tian X Y 2002 Chinese J. Geophys. 45 101

    [24]

    Vo-Thanh D 1995 Geophys. J. Int. 121 737

    [25]

    Batzle M L, Han D H, Hofmann R 2006 Geophysics 71 N1

    [26]

    Batzle M, Han D, Castagna J 1996 Soc. Expl. Geoph. Expanded Abstracts 1687

    [27]

    O'Doherty R F, Anstey N A 1971 Geophys. Prospecting 19 430

    [28]

    Huang K 1979 Solid Physics (Beijing: People's Education Press) pp66-67 (in Chinese) [黄昆 1979 固体物理学 (北京:人民教育出版社) 第66—67页]

  • [1] 黄建邦, 南虎, 张锋, 张佳乐, 刘来君, 王大威. 弛豫铁电体弥散相变与热滞效应的伊辛模型.  , 2021, 70(11): 110501. doi: 10.7498/aps.70.20202019
    [2] 王婷, 崔志文, 刘金霞, 王克协. 含少量气泡流体饱和孔隙介质中的弹性波.  , 2018, 67(11): 114301. doi: 10.7498/aps.67.20180209
    [3] 杨瑞科, 李茜茜, 姚荣辉. 沙尘大气电磁波多重散射及衰减.  , 2016, 65(9): 094205. doi: 10.7498/aps.65.094205
    [4] 金鑫鑫, 金峰, 刘宁, 孙其诚. 准静态颗粒介质的弹性势能弛豫分析.  , 2016, 65(9): 096102. doi: 10.7498/aps.65.096102
    [5] 冯晓伟, 李俊承, 王洪波, 常敬臻. 平板冲击下氧化铝陶瓷弹性前驱波衰减的细观机理.  , 2016, 65(16): 166201. doi: 10.7498/aps.65.166201
    [6] 孙其诚, 刘传奇, 周公旦. 颗粒介质弹性的弛豫.  , 2015, 64(23): 236101. doi: 10.7498/aps.64.236101
    [7] 成鹏飞, 王辉, 李盛涛. CaCu3Ti4O12陶瓷的介电特性与弛豫机理.  , 2013, 62(5): 057701. doi: 10.7498/aps.62.057701
    [8] 郑宗文, 徐庭栋, 王凯, 邵冲. 晶界滞弹性弛豫理论的现代进展.  , 2012, 61(24): 246202. doi: 10.7498/aps.61.246202
    [9] 席道瑛, 徐松林, 杜赟. 泵油饱和砂岩黏弹行为的实验研究.  , 2012, 61(11): 119102. doi: 10.7498/aps.61.119102
    [10] 杨洪东, 于奇, 王向展, 李竞春, 宁宁, 杨谟华. 基于低温硅技术的赝晶SiGe应变弛豫机理.  , 2010, 59(8): 5743-5748. doi: 10.7498/aps.59.5743
    [11] 何庆, 杨春利, 吴修胜, 陈志军, 陈初升, 刘卫. La2-xNdxCuO4+δ(0.1≤x≤1.2)体系中滞弹性弛豫与相变内耗研究.  , 2010, 59(11): 7979-7985. doi: 10.7498/aps.59.7979
    [12] 许 峰, 刘堂晏, 黄永仁. 油水饱和球管孔隙模型弛豫的理论计算与计算机模拟.  , 2008, 57(1): 550-555. doi: 10.7498/aps.57.550
    [13] 鄢 舒, 王 殊. 多原子分子气体中声波弛豫衰减谱的重建算法.  , 2008, 57(7): 4282-4291. doi: 10.7498/aps.57.4282
    [14] 刘 卫, 张艳敏, 吴修胜, 张华力, 陈初升. GdBaCo2O5+δ体系的滞弹性内耗研究.  , 2006, 55(11): 5996-6000. doi: 10.7498/aps.55.5996
    [15] 水嘉鹏, 刘咏松. 低频内耗测量时标准滞弹性固体的内耗行为.  , 1999, 48(4): 692-698. doi: 10.7498/aps.48.692
    [16] 丁屹, 俞文海, 吴昆裕. 快离子导体玻璃滞弹性弛豫的红外发散响应.  , 1989, 38(1): 134-139. doi: 10.7498/aps.38.134
    [17] 王养璞, 金其淑. 热激活磁弹性弛豫的多体普适方法研究.  , 1988, 37(9): 1401-1405. doi: 10.7498/aps.37.1401
    [18] 王庆吉, 谢川. 饱和光谱中带弛豫项的光学Bloch方程的微扰解法.  , 1986, 35(7): 855-863. doi: 10.7498/aps.35.855
    [19] 李景德. 热电弛豫效应.  , 1984, 33(11): 1563-1568. doi: 10.7498/aps.33.1563
    [20] 马本堃. 自旋-晶格弛豫.  , 1965, 21(7): 1419-1436. doi: 10.7498/aps.21.1419
计量
  • 文章访问数:  6606
  • PDF下载量:  599
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-06
  • 修回日期:  2011-12-09
  • 刊出日期:  2012-07-05

/

返回文章
返回
Baidu
map