-
采用高温固相法获得了一种只具有 微弱余辉的新型电子俘获型光存储材料Sr2SnO4:Tb3 +, Li +. 发光性能研究结果表明: 该材料对980 nm的红外激光具有很好的上转换光激励信息读出响应, 同时292 nm紫外光为其最佳信息写入光源. 光存储性能研究结果表明: 该材料的浅陷阱较少, 因此其余辉发光很弱, 不到500 s; 另一方面, 该材料中存在大量的深蓄能陷阱. 因此, Sr2SnO4: Tb3 +, Li+是一种具有较好实际应用价值的新型电子俘获型光存储材料. 此外, 还讨论了Sr2SnO4: Tb3 +, Li+的光存储发光机理.
-
关键词:
- Sr2SnO4: Tb3 + /
- Li+ /
- 光激励发光 /
- 光存储
The novel electron trapping material of Sr2SnO4: Tb3+, Li+ for optical storage is synthesized by the solid state method. Stimulated by 980 nm infrared laser, the material shows intense up-conversion photostimulated luminescence. The ultraviolet light at 292 nm is an optimal writing source. The material has less shallow traps, which corresponds to its weak afterglow (less than 500 s). On the other hand, this material has lots of deep traps. Thus, the Sr2SnO4:Tb3 +, Li+ is a promising optical storage material. In addition, we propose the optical storage luminescence mechanism of Sr2SnO4:Tb3 +, Li +.-
Keywords:
- Sr2SnO4: Tb3 + /
- Li+ /
- photostimulated luminescence /
- optical storage
[1] Johnson E J, Kafalas J, Dyes W A 1982 Appl. Phys. Lett. 40 993
[2] Cho Y, Kim D S, Choe B, Lim H, Kim D 1997 Phys. Rev. B 56 R4375
[3] Zhang Y, Wang B, Liu X, Xiao M 2010 J. Appl. Phys. 107 103502
[4] Gong X, Chen W J 1998 Appl. Phys. Lett. 73 2875
[5] Yamashita S A,Ogawa N 1989 Phys.Status. Solidi B 118 89
[6] Matsuzawa T, Aoki Y, Takeuchi N, Maruyama Y 1996 J. Electrochem. Soc. 143 2670
[7] Kang C, Liu R, Chang J, Lee B 2003 Chem. Mater. 15 3966
[8] Lei B, Li B, Zhang H, Li W 2007 Opt. Mater. 29 1491
[9] Wang J X, Xie S S, Yuan H J, Yan X Q, Liu D F, Gao Y, Zhou Z P, Song L, Liu L F, Zhao X W, Dou X Y, Zhou W Y, Wang G 2004 Solid State Commun. 131 435
[10] Wang J X, Xie S S, Gao Y, Yan X Q, Liu D F, Yuan H J, Zhou Z P, Song L, Liu L F, Zhou W Y, Wang G 2004 J. Cryst. Growth. 267 177
[11] Zhang J C, Yu M H, Qin Q S 2010 J. Appl. Phys. 108 123518
[12] Zhang J C, Wang Y H, Zhang Z Y, Xie P, Li H H, Jiang Y P 2008 Chin. Lett. 25 1453
[13] Liao J S, Liu B, Lai H S 2009 J.Lumin. 129 668
[14] Yu M, Lin J, Fu J, Zhang H J, Han Y C 2003 J.Mater.Chem. 13 1413
-
[1] Johnson E J, Kafalas J, Dyes W A 1982 Appl. Phys. Lett. 40 993
[2] Cho Y, Kim D S, Choe B, Lim H, Kim D 1997 Phys. Rev. B 56 R4375
[3] Zhang Y, Wang B, Liu X, Xiao M 2010 J. Appl. Phys. 107 103502
[4] Gong X, Chen W J 1998 Appl. Phys. Lett. 73 2875
[5] Yamashita S A,Ogawa N 1989 Phys.Status. Solidi B 118 89
[6] Matsuzawa T, Aoki Y, Takeuchi N, Maruyama Y 1996 J. Electrochem. Soc. 143 2670
[7] Kang C, Liu R, Chang J, Lee B 2003 Chem. Mater. 15 3966
[8] Lei B, Li B, Zhang H, Li W 2007 Opt. Mater. 29 1491
[9] Wang J X, Xie S S, Yuan H J, Yan X Q, Liu D F, Gao Y, Zhou Z P, Song L, Liu L F, Zhao X W, Dou X Y, Zhou W Y, Wang G 2004 Solid State Commun. 131 435
[10] Wang J X, Xie S S, Gao Y, Yan X Q, Liu D F, Yuan H J, Zhou Z P, Song L, Liu L F, Zhou W Y, Wang G 2004 J. Cryst. Growth. 267 177
[11] Zhang J C, Yu M H, Qin Q S 2010 J. Appl. Phys. 108 123518
[12] Zhang J C, Wang Y H, Zhang Z Y, Xie P, Li H H, Jiang Y P 2008 Chin. Lett. 25 1453
[13] Liao J S, Liu B, Lai H S 2009 J.Lumin. 129 668
[14] Yu M, Lin J, Fu J, Zhang H J, Han Y C 2003 J.Mater.Chem. 13 1413
计量
- 文章访问数: 7775
- PDF下载量: 828
- 被引次数: 0