-
本文研究了90nm CMOS工艺下栅氧化层厚度为1.4 nm沟道长度为100 nm的轻掺杂漏(LDD)nMOSFET栅电压VG对栅致漏极泄漏 (GIDL)电流Id的影响,发现不同VG下ln (Id/(VDG-1.2))-1/(VDG-1.2)曲线相比大尺寸厚栅器件时发生了分裂现象. 通过比较VG变化下ln(Id/(VDG-1.2))的差值,得出VG与这种分裂现象之间的作用机理,分裂现象的产生归因于VG的改变影响了GIDL电流横向空穴隧穿部分所致. 随着|VG|的变小,ln(Id/(VDG-1.2))曲线的斜率的绝对值变小.进一步发现不同VG对应的ln (Id/(VDG-1.2))曲线的斜率c及截距d与VG呈线性关系,c,d曲线的斜率分别为3.09和-0.77. c与d定量的体现了超薄栅超短沟器件中VG对GIDL电流的影响,基于此,提出了一个引入VG 影响的新GIDL电流关系式.
-
关键词:
- GIDL /
- 带带隧穿 /
- CMOS /
- LDD nMOSFET
The influence of gate voltage VG on gate induced drain leakage (GIDL) current is studied in LDD nMOSFET with a gate oxide of 1.4nm and a channel length of 100nm. It is found that the split phenomena of ln(Id/(VDG-1.2))-1/(VDG-1.2) curves under different VG values occurs, which are different from the large MOSFET. Through comparing varieties of ln(Id/(VDG-1.2)) of different VG values, the mechanism of this split phenomenon is obtained. This is ascribed to the change of the hole-tunneling part of GIDL current under different VG values. The absolute value of ln(Id/(VDG-1.2)) curve slope decrease with |VG| value decreasing . It is further found that the values of slope c and intercept d of ln(Id/(VDG-1.2)) curves are linear with VG and the slopes of c and d are 3.09 and -0.77, respectively. The values of c and d quantificationally show the influence of VG on the GIDL current in an ultra-thin ultra-short MOSFET. On the basis of these results, a new GIDL current model including VG is proposed.-
Keywords:
- GIDL /
- band-to-band tunneling /
- CMOS /
- LDD nMOSFET
[1] Choi Y K, Ha Daewon, King T J, Bokor J 2003 Jan. J. Appl. Phys. 42 2073
[2] Ma X H, Hao Y R, Gao H X, Chen H F, Hao Y 2009 Appl. Phys. Lett. 95 152107
[3] Chen H F, Cao Y, Ma X H, 2007 Acta Phys. Sin. 56 1662(in Chinese) [陈海峰, 郝跃, 马晓华 2007 56 1662]
[4] Chang M C, Lin J P, Lai C S, Chang R D, Shih S N, Wang M Y, Lee P 2005 IEEE Trans. Electron Devices 52 484
[5] Liu H X, Zheng X F, Hao Y 2005 Acta Phys. Sin. 54 5867(in Chinese)[刘红侠, 郑雪峰, 郝跃 2005 54 5867]
[6] Fossum J G, Kim K, Chong Y 1999 IEEE Trans. Electron Devices 46 2195
[7] Larcher L, Pavan P, Eitan B 2004 IEEE Trans. Electron Devices 51 1593
[8] Kumar P B, Sharma R, Nair P R, Ma S 2007 IEEE Trans. Electron Devices 54 98
[9] Han JW, Ryu SW, Choi S J, Choi Y K 2009 IEEE Electron Device Lett. 30 189
[10] Choi S J, Han J , Kim C, Kim S, Choi Y 2009 IEEE Trans. Electron Devices 56 3228
[11] Chen J, Chen T Y, Chen I C, Ko P, Hu C 1987 IEEE Electron Device Lett. 8 515
[12] Lo G Q, Joshi A B, Kwong D L 1991 IEEE Electron Device Lett. 12 6
[13] Semenov O, Pradzynski A, Sachdev M 2002 IEEE Trans. Semiconductor Manufacturing 15 11
[14] Wang T H, Chang T E, Chiang L P, Wang C H, Zous N K, Huang C 1998 IEEE Trans. Electron Devices 45 1511
[15] Guo J C, Liu Y C. Chou M H, Wang M T, Shone F 1998 IEEE Trans. Electron Devices 45 1518
[16] Chan T Y, Chen J, KO P K, Hu C 1987 IEDM Tech. Dig. 718
[17] Wann H , Ko K P, Hu C 1992 IEDM Tech. Dig. 150
-
[1] Choi Y K, Ha Daewon, King T J, Bokor J 2003 Jan. J. Appl. Phys. 42 2073
[2] Ma X H, Hao Y R, Gao H X, Chen H F, Hao Y 2009 Appl. Phys. Lett. 95 152107
[3] Chen H F, Cao Y, Ma X H, 2007 Acta Phys. Sin. 56 1662(in Chinese) [陈海峰, 郝跃, 马晓华 2007 56 1662]
[4] Chang M C, Lin J P, Lai C S, Chang R D, Shih S N, Wang M Y, Lee P 2005 IEEE Trans. Electron Devices 52 484
[5] Liu H X, Zheng X F, Hao Y 2005 Acta Phys. Sin. 54 5867(in Chinese)[刘红侠, 郑雪峰, 郝跃 2005 54 5867]
[6] Fossum J G, Kim K, Chong Y 1999 IEEE Trans. Electron Devices 46 2195
[7] Larcher L, Pavan P, Eitan B 2004 IEEE Trans. Electron Devices 51 1593
[8] Kumar P B, Sharma R, Nair P R, Ma S 2007 IEEE Trans. Electron Devices 54 98
[9] Han JW, Ryu SW, Choi S J, Choi Y K 2009 IEEE Electron Device Lett. 30 189
[10] Choi S J, Han J , Kim C, Kim S, Choi Y 2009 IEEE Trans. Electron Devices 56 3228
[11] Chen J, Chen T Y, Chen I C, Ko P, Hu C 1987 IEEE Electron Device Lett. 8 515
[12] Lo G Q, Joshi A B, Kwong D L 1991 IEEE Electron Device Lett. 12 6
[13] Semenov O, Pradzynski A, Sachdev M 2002 IEEE Trans. Semiconductor Manufacturing 15 11
[14] Wang T H, Chang T E, Chiang L P, Wang C H, Zous N K, Huang C 1998 IEEE Trans. Electron Devices 45 1511
[15] Guo J C, Liu Y C. Chou M H, Wang M T, Shone F 1998 IEEE Trans. Electron Devices 45 1518
[16] Chan T Y, Chen J, KO P K, Hu C 1987 IEDM Tech. Dig. 718
[17] Wann H , Ko K P, Hu C 1992 IEDM Tech. Dig. 150
计量
- 文章访问数: 8338
- PDF下载量: 585
- 被引次数: 0