搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小分子掺杂高分子半导体薄膜中异质结结构光谱学特性研究

刘宁 张新平 窦菲

引用本文:
Citation:

小分子掺杂高分子半导体薄膜中异质结结构光谱学特性研究

刘宁, 张新平, 窦菲

Heterojunction structure forming in the polymer film doped with small-molecule organic semiconductors

Liu Ning, Zhang Xin-Ping, Dou Fei
PDF
导出引用
  • 利用稳态吸收和荧光光谱学、瞬态荧光光谱学(时间相关单光子计数技术)系统研究了EPPTC掺杂的F8BT薄膜异质结结构中激发复合体的形成机理和荧光发射特性,并表征了其特征光谱和荧光发射寿命. 其特征主要体现在显著延长的荧光发射寿命和红移的荧光发射光谱.这对于理解有机半导体材料异质结结构形成的机理和光物理学特性研究提供了多方面的实验依据.同时,由于这两种材料混合后的吸收光谱较宽范围地覆盖了可见光谱区,这样的有机半导体掺杂工艺对于有机光伏器件和太阳能电池器件的应用研究具有重要意义.
    Blends and doping of organic semiconductors are generally employed to improve effectively the charge transfer and dissociation performance. The absorption spectrum may be optimized making use of the different energy states of the components in the blends, which may favor the development of the photovoltaic or solar cell devices. Excellent type-II heterojunction structures can be produced by mixing the small-molecule perylene (EPPTC) and a copolymer of polyfluorene (F8BT). Actually, F8BT and EPPTC exhibit absorptions in the blue region and in the green region, respectively. Thus, the blend will have a much broadened absorption spectrum. In the experiment, the blend solution of these two materials in chloroform is spin-coated onto a piece of glass substrate, so that EPPTC is doped into the polymer of F8BT and the heterojunction structure forms in the final solid film. Then, steady-state absorption and fluorescence spectroscopy, as well as the transient photoluminesence spectroscopy (time-correlated single-photon counting), is used to investigate the formation and the photoluminescence properties of exciplex in the heterojunction film of F8BT doped with EPPTC. The photoluminscence (PL) spectrum and the life-time are measured to characterize the exciplex in the blend film, where the longer life-time of the red-shifted PL spectrum confirms the formation of the exciplex. This provides various experimental data for understanding the formation and the photophysical properties of the heterojunction structures in organic semiconductor blends. Futhermore, the absorption of the blend film covers a large range of the visible spectrum. Therefore, this kind of doping of organic semiconductor is important for the development of photovoltaic and solar cell devices.
    • 基金项目: 国家自然科学基金(批准号:111074018), 新世纪优秀人才支持计划, 高等学校博士学科点专项(批准号:20091103110012)和教育部留学回国人员科研启动基金资助的课题.
    • Funds: Project supported by the Natural Natural Science Foundation of China (Grant No. 111074018), the Program for New Century Excellent Talents in University, the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20091103110012), and the Scientific Research Staring Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China.
    [1]

    Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Bradaley D D C, Dos Santos D A, Brédas J L, Lögdlund M, Salaneck W R 1999 Nature 397 121

    [2]

    Crone B K, Davids P S, Campbell I H, Smith D L 2000 J. Appl. Phys. 87 1974

    [3]

    Chappell J, Lidzey D G, Jukes P C, Higgins A M, Thompson R L, O0Connor S, Grizzi I, Fletcher R, O’Brien J, Geoghegan M, Jones R A L 2003 Nat. Mater. 2 616

    [4]

    Westenhoff S, Howard I A, Hodgkiss J M, Kirov K R, Bronstein H A, Williams C K, Greenham N C, Friend R H 2008 J. Am. Chem. Soc. 130 13653

    [5]

    Wilkinson F, Helman W P, Ross A B 1995 J. Phys. Chem. Refe. Data 24 663

    [6]

    Morteani A C, Sreearunothai P, Laura, Herz M, Friend R H, Silv C 2004 Phys. Rev. Lett. 92 247402.

    [7]

    Morteani A C, Friend R H, Silva C 2004 Chem. Phys. Lett. 391 81

    [8]

    Huang Y S, Westenhoff S, Avilov I, Sreearunothai P, Hodgkiss J M, Deleener C, Friend R H, Beljonne D D 2008 Nat. Mater. 7 483

    [9]

    Morteani A C, Dhoot A S, Kim J-S, Silva C, Greenham N C, Murphy C, Moons E, Cina S, Burroughes J H, Friend R H 2003 Adv. Mater. 15 1708

    [10]

    Peng C Z, Zhang X P, Liu H M, Feng S F 2010 Acta Phys. Sin. 59 5791 (in Chinese) [彭春增,张新平,刘红梅,冯胜飞 2010 59 5791]

    [11]

    Shepherd W E B, Platt A F, Kendrich M J 2011 J. Phys. Chen. Lett. 2 362

    [12]

    Zhang W, Yu J S, Yuan K 2010 Proceedings of SPIE-The International Society for Optical Engineering 7658

    [13]

    Lai S L, ChanMY, Tong Q X 2010 J. Nonlinear Opt. Phys. Mater. 19 603

    [14]

    Park YW, Kim Y M, Choi J H 2011 J. Nanoscience Nanotechnology 11 1381

    [15]

    Zhang X P, Sun B Q 2007 J. Phys. Chem. B 111 10881

    [16]

    Kang J, Kaczmarek O, Liebscher J, Dähne1 L 2010 Int. J. Polym. Sci. 2010 264781

    [17]

    Chaudhuri D, Li D, Che Y, Shafran E, Gerton J M, Zang L, Lupton J M 2011 Nano Lett. 11 488

    [18]

    Provencher F, Laprade J F, C?oté M, Silva C 2009 Phys. Stat. Sol. (c) 6 93

  • [1]

    Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Bradaley D D C, Dos Santos D A, Brédas J L, Lögdlund M, Salaneck W R 1999 Nature 397 121

    [2]

    Crone B K, Davids P S, Campbell I H, Smith D L 2000 J. Appl. Phys. 87 1974

    [3]

    Chappell J, Lidzey D G, Jukes P C, Higgins A M, Thompson R L, O0Connor S, Grizzi I, Fletcher R, O’Brien J, Geoghegan M, Jones R A L 2003 Nat. Mater. 2 616

    [4]

    Westenhoff S, Howard I A, Hodgkiss J M, Kirov K R, Bronstein H A, Williams C K, Greenham N C, Friend R H 2008 J. Am. Chem. Soc. 130 13653

    [5]

    Wilkinson F, Helman W P, Ross A B 1995 J. Phys. Chem. Refe. Data 24 663

    [6]

    Morteani A C, Sreearunothai P, Laura, Herz M, Friend R H, Silv C 2004 Phys. Rev. Lett. 92 247402.

    [7]

    Morteani A C, Friend R H, Silva C 2004 Chem. Phys. Lett. 391 81

    [8]

    Huang Y S, Westenhoff S, Avilov I, Sreearunothai P, Hodgkiss J M, Deleener C, Friend R H, Beljonne D D 2008 Nat. Mater. 7 483

    [9]

    Morteani A C, Dhoot A S, Kim J-S, Silva C, Greenham N C, Murphy C, Moons E, Cina S, Burroughes J H, Friend R H 2003 Adv. Mater. 15 1708

    [10]

    Peng C Z, Zhang X P, Liu H M, Feng S F 2010 Acta Phys. Sin. 59 5791 (in Chinese) [彭春增,张新平,刘红梅,冯胜飞 2010 59 5791]

    [11]

    Shepherd W E B, Platt A F, Kendrich M J 2011 J. Phys. Chen. Lett. 2 362

    [12]

    Zhang W, Yu J S, Yuan K 2010 Proceedings of SPIE-The International Society for Optical Engineering 7658

    [13]

    Lai S L, ChanMY, Tong Q X 2010 J. Nonlinear Opt. Phys. Mater. 19 603

    [14]

    Park YW, Kim Y M, Choi J H 2011 J. Nanoscience Nanotechnology 11 1381

    [15]

    Zhang X P, Sun B Q 2007 J. Phys. Chem. B 111 10881

    [16]

    Kang J, Kaczmarek O, Liebscher J, Dähne1 L 2010 Int. J. Polym. Sci. 2010 264781

    [17]

    Chaudhuri D, Li D, Che Y, Shafran E, Gerton J M, Zang L, Lupton J M 2011 Nano Lett. 11 488

    [18]

    Provencher F, Laprade J F, C?oté M, Silva C 2009 Phys. Stat. Sol. (c) 6 93

  • [1] 王辉耀, 魏福贤, 吴雨廷, 彭腾, 刘俊宏, 汪波, 熊祖洪. 激基复合物有机发光二极管中平衡载流子增强电荷转移态的反向系间窜越过程.  , 2023, 72(17): 177201. doi: 10.7498/aps.72.20230949
    [2] 赵茜, 陈敬, 彭腾, 刘俊宏, 汪波, 陈晓莉, 熊祖洪. 激基复合物有机发光二极管中系间窜越和反向系间窜越过程的非单调电流依赖关系.  , 2023, 72(16): 167201. doi: 10.7498/aps.72.20230765
    [3] 陶聪, 王敬民, 牛美玲, 朱琳, 彭其明, 王建浦. 非磁性发光材料的磁场效应: 从有机半导体到卤化物钙钛矿.  , 2022, 71(6): 068502. doi: 10.7498/aps.71.20211872
    [4] 吴雨廷, 朱洪强, 魏福贤, 王辉耀, 陈敬, 宁亚茹, 吴凤娇, 陈晓莉, 熊祖洪. 激基复合物与电致激基复合物共存体系中Dexter能量传递导致的负磁效率.  , 2022, 71(22): 227201. doi: 10.7498/aps.71.20221288
    [5] 宁亚茹, 赵茜, 汤仙童, 陈敬, 吴凤娇, 贾伟尧, 陈晓莉, 熊祖洪. 利用发光磁效应研究同分异构体mCBP和CBP作为给体的激基复合物器件的微观过程.  , 2022, 71(8): 087201. doi: 10.7498/aps.71.20212068
    [6] 王逸飞, 李晓薇. 石墨烯/BiOI纳米复合物电子结构和光学性质的第一性原理模拟计算.  , 2018, 67(11): 116301. doi: 10.7498/aps.67.20172220
    [7] 袁国亮, 李爽, 任申强, 刘俊明. 激发态电荷转移有机体的多铁性研究.  , 2018, 67(15): 157509. doi: 10.7498/aps.67.20180759
    [8] 刘丽娟, 孔晓波, 刘永刚, 宣丽. 基于液晶/聚合物光栅的高转化效率有机半导体激光器.  , 2017, 66(24): 244204. doi: 10.7498/aps.66.244204
    [9] 王鹿霞, 常凯楠. 异质结电荷转移的密度矩阵理论近似研究.  , 2014, 63(13): 137302. doi: 10.7498/aps.63.137302
    [10] 於黄忠. 有机共混结构叠层太阳电池的研究进展.  , 2013, 62(2): 027201. doi: 10.7498/aps.62.027201
    [11] 修明霞, 任俊峰, 王玉梅, 原晓波, 胡贵超. 肖特基势垒对铁磁/有机半导体结构自旋注入性质的影响.  , 2010, 59(12): 8856-8861. doi: 10.7498/aps.59.8856
    [12] 郑加金, 陆云清, 李培丽. 激发态分子内质子转移有机分子HBT的三阶非线性光学特性.  , 2010, 59(7): 4687-4693. doi: 10.7498/aps.59.4687
    [13] 彭春增, 张新平, 刘红梅, 冯胜飞. 粒子等离子共振对有机半导体共混体系中激发复合体荧光发射的作用.  , 2010, 59(8): 5791-5795. doi: 10.7498/aps.59.5791
    [14] 胡 玥, 饶海波, 李君飞. ITO/有机半导体/金属结构OLED器件的数值模拟.  , 2008, 57(9): 5928-5932. doi: 10.7498/aps.57.5928
    [15] 李训栓, 彭应全, 杨青森, 刑宏伟, 路飞平. 有机半导体异质界面电荷传输解析模型研究.  , 2007, 56(9): 5441-5445. doi: 10.7498/aps.56.5441
    [16] 麻华丽, 李英兰, 杨保华, 王 锋. C60-聚甲基丙烯酸甲脂复合膜的结构、光学和电荷转移特性.  , 2005, 54(6): 2859-2862. doi: 10.7498/aps.54.2859
    [17] 毛宏颖, 黄 寒, 严欣澂, 陈 桥, 钱惠琴, 张建华, 李海洋, 何丕模, 鲍世宁. 有机半导体perylene和tetracene在Ag(110)表面上有序薄膜的结构与电子态研究.  , 2005, 54(1): 460-466. doi: 10.7498/aps.54.460
    [18] 朱文清, 吴有智, 郑新友, 蒋雪茵, 张志林, 孙润光, 许少鸿. 双层有机电致发光器件中多成分激发态发射.  , 2004, 53(7): 2325-2329. doi: 10.7498/aps.53.2325
    [19] 薛舫时. 半导体异质结构中的谷间电子转移效应.  , 1990, 39(6): 142-150. doi: 10.7498/aps.39.142
    [20] 杨达林, 万梅香, 张镜文, 钱人元. 聚N-乙烯基咔唑-2,4,7,三硝基-9-芴酮电荷转移复合物薄膜的载流子迁移率.  , 1982, 31(12): 104-109. doi: 10.7498/aps.31.104-2
计量
  • 文章访问数:  7319
  • PDF下载量:  616
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-02-08
  • 修回日期:  2011-05-09
  • 刊出日期:  2012-01-05

/

返回文章
返回
Baidu
map