-
在有效质量近似和球形方形势模型下,计算了开放型球状纳米系统电子散射截面及电子按能量的概率分布,探讨了线度、势垒宽度对电子散射截面和共振能量以及共振宽度的影响.结果表明:电子的散射截面随能量的分布曲线有一极大值和极小值,而且电子能量的概率分布曲线的极大值位置总是介于散射截面分布曲线的极大值与极小值的能量位置之间;散射截面随内核半径r0的增大而增大,而且散射截面分布曲线随r0的增大由较平滑变得较尖锐;散射截面随势垒宽度的增大而增大,但在=1.4aCdS1.7aCdS的范围内,变化出现异常,在=1.6aCdS时散射截面出现极小;电子共振能量El 随的变化与电子所处状态有关,而电子共振宽度l随的增大而减小;不论取何值, El和l都满足能量和时间的测不准关系.Under the condition of the spherical square potential model and the effective mass approximation, the electronic scattering cross-section and the electronic probability distribution are obtained in an open-type spherical nanometer system, and the influences of the size and the width of potential barrier on electronic scattering cross-section, resonance energy and resonance width are discussed. The results show that there exist one maximum and one minimum in the distribution curve of the electronic scattering cross-section versus energy, and the maximum of electronic energy probability distribution curve is between the maximum and the minimum of energy in the scattering cross-section curve; the scattering cross-section increases with the increase of r0, the inner radius, and the scattering cross-section curve will change from smoother to sharper with the increase of r0; the scattering cross-section will enlarge with , the width of potential barrier, but it will become abnormal when is between 1.4aCdS and 1.7aCdS; when =1.6aCdS, the scattering cross-section is extremely small; El, the electronic resonance energy changing with , is related to the electronic state, while l, the electronic resonance width will decrease with the increase of ; no matter what is, both El and l satisfy the uncertainty principle of energy and time.
-
Keywords:
- spherical nanometer system /
- breadth of potential barrier /
- electronic scattering section /
- electronic probability distribution
[1] Voloshin M B 2010 Phys. Rev. Lett. 105 201801
[2] Li J, Linghu R F, Si G J, Yang X D 2010 Acta Phys. Sin. 59 5424 (in Chinese)[李 劲、令狐荣锋、司冠杰、杨向东 2010 59 5424]
[3] [4] [5] Yang X E, Yang J S, Dong J T, Che M R 1997 Acta Phys. Sin. 46 1834 (in Chinese) [杨新娥、杨吉生、东剑涛、车明日 1997 46 1834]
[6] Alexandre A, Dang Y L, Stefan A M, Pendry J B 2010 Phys. Rev. Lett. 105 233901
[7] [8] He L, Du L, Zhuang Y Q, Chen H, Chen W H, Li W H, Sun P 2010 Chin. Phys. B 19 097202
[9] [10] [11] Zheng R L, Zhang C L, Chen Z Q, Liu J 2003 Acta Phys. Sin. 52 2284 (in Chinese) [郑瑞伦、张翠玲、陈志谦、刘 俊 2003 52 2284]
[12] [13] Zheng R L, Zhang C L, Chen Z Q 2005 Acta Phys. Sin. 54 886 (in Chinese) [郑瑞伦、张翠玲、陈志谦 2005 54 886]
[14] Zheng R L 2007 Acta Phys. Sin. 56 4901 (in Chinese) [郑瑞伦 2007 56 4901]
[15] [16] [17] Wu Q, Zheng R L 2008 Acta Phys. Sin. 57 5191 (in Chinese) [吴 强、郑瑞伦 2008 57 5191]
[18] [19] Schooss D, Mews A, Eychmuller A, Welle H 1994 Phys. Rev. B 49 17072
[20] Mews A, Kadavanich A V, Banin U, Alivisatos A P 1996 Phys. Rev. B 53 13242
[21] [22] Wang Z X, Guo D R 1979 Especial Function Theory (Beijing: Science Press) p152 (in Chinese) [王竹溪、郭敦仁 1979 特殊函数论 (北京:科学出版社) 第152页]
[23] [24] [25] Tkach H, Seji Y A 2009 Phys. Stat. Sol. 43 357
-
[1] Voloshin M B 2010 Phys. Rev. Lett. 105 201801
[2] Li J, Linghu R F, Si G J, Yang X D 2010 Acta Phys. Sin. 59 5424 (in Chinese)[李 劲、令狐荣锋、司冠杰、杨向东 2010 59 5424]
[3] [4] [5] Yang X E, Yang J S, Dong J T, Che M R 1997 Acta Phys. Sin. 46 1834 (in Chinese) [杨新娥、杨吉生、东剑涛、车明日 1997 46 1834]
[6] Alexandre A, Dang Y L, Stefan A M, Pendry J B 2010 Phys. Rev. Lett. 105 233901
[7] [8] He L, Du L, Zhuang Y Q, Chen H, Chen W H, Li W H, Sun P 2010 Chin. Phys. B 19 097202
[9] [10] [11] Zheng R L, Zhang C L, Chen Z Q, Liu J 2003 Acta Phys. Sin. 52 2284 (in Chinese) [郑瑞伦、张翠玲、陈志谦、刘 俊 2003 52 2284]
[12] [13] Zheng R L, Zhang C L, Chen Z Q 2005 Acta Phys. Sin. 54 886 (in Chinese) [郑瑞伦、张翠玲、陈志谦 2005 54 886]
[14] Zheng R L 2007 Acta Phys. Sin. 56 4901 (in Chinese) [郑瑞伦 2007 56 4901]
[15] [16] [17] Wu Q, Zheng R L 2008 Acta Phys. Sin. 57 5191 (in Chinese) [吴 强、郑瑞伦 2008 57 5191]
[18] [19] Schooss D, Mews A, Eychmuller A, Welle H 1994 Phys. Rev. B 49 17072
[20] Mews A, Kadavanich A V, Banin U, Alivisatos A P 1996 Phys. Rev. B 53 13242
[21] [22] Wang Z X, Guo D R 1979 Especial Function Theory (Beijing: Science Press) p152 (in Chinese) [王竹溪、郭敦仁 1979 特殊函数论 (北京:科学出版社) 第152页]
[23] [24] [25] Tkach H, Seji Y A 2009 Phys. Stat. Sol. 43 357
计量
- 文章访问数: 6633
- PDF下载量: 582
- 被引次数: 0