搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Logistic均匀分布图像置乱方法

曹光辉 胡凯 佟维

引用本文:
Citation:

基于Logistic均匀分布图像置乱方法

曹光辉, 胡凯, 佟维

Image scrambling based on Logistic uniform distribution

Cao Guang-Hui, Hu Kai, Tong Wei
PDF
导出引用
  • 针对许多基于Logistic图像置乱方法的设计只注重置乱规则和方法,没能很好地给出设计原理这一现象,文章遵循从坚实的数学理论到实际应用这一科学过程,给出了一个全新的具有坚实理论基础的基于Logistic图像置乱算法.依据混沌初值敏感性,密钥空间大这一特性,从混沌映射Logistic着手,结合概率相关理论,设计了基于Logistic映射(0,1)区间上的均匀分布随机变量产生算法,利用这一均匀分布变量生成基于位置互换的随机排列.为了度量该随机排列的置乱强度,设计了置乱强度测试算法.最后,利用这一基于Logistic均匀分布的随机排列驱动图像生成置乱图像.比较Baker算法、Ye算法和Yoon算法,结果显示,文章建议的Logistic图像置乱算法具有很大的密钥空间,很强的密钥敏感性,很强的使结构性数据相关性消失的性能,进而能够增加熵值,很好的抗攻击能力,可以有效地满足图像置乱需求.
    Most algorithms of image scrambling transformation based on Logistic map are currently dedicated to permutation rules and methods without considering design philosophy. In this paper, we propose a new image bit permutation algorithm based on the Logistic map. This algorithm with firmly mathematic theory is designed by following the scientific course from theory to practice. According to the characteristics of chaotic sensitivity to initial condition and large key space, starting from Logistic map, the transformation which can generate uniformly distributed random variable in the interval based on Logistic at =4 is developed. Utilizing this generated uniform random variable, random permutation algorithm based on interchange position is obtained. For measuring permutation strength of the proposed random permutation algorithm, the corresponding permutation strength testing algorithm is designed. Based on this permutation algorithm, the image bit permutation algorithm is described. When used to image and compared with Baker Ye and Yoon algorithm, the proposed image bit permutation method exhibits large key space, extreme sensitivity to initial condition, effective capability for dissipating high correlation among pixels and increasing information about entropy value. Results show that this proposed scrambling scheme with firmly theoretical foundation can enhance image security significantly.
    • 基金项目: 国家自然科学基金(批准号:61073013)和航空重点基金项目 (批准号:2010ZA04001)资助的课题.
    [1]

    Claude E S 1949 Bell Sys. Tech. Journal 28 656

    [2]

    Shi Z, Lee R 2000 12th IEEE International Conference on Application-Specific Systems, Architectures, and Processors (ASAP 2000) Boston MA USA, IEEE Computer Society, July 10-12 2000 p138

    [3]

    Lee R, Shi Z, Yang X 2001 IEEE Micro. 21 56

    [4]

    Socek D, Li S, Magliveras S S 2005 International Conference on Security and Privacy for Emerging Areas in Communications Networks Athens Greece, IEEE Computer Society, September 5-9 2005 p208

    [5]

    Ye G D 2010 Patt. Recogn. Lett. 31 347

    [6]

    Yoon J W, Kim H 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 3998

    [7]

    Lasota A, Mackey M C 1997 Chaos, Fractals and noise-Stochastic Aspects of Dynamics (2nd Ed)(New York:Springer-Verlag)p230

    [8]

    Shahram E B, Mohammad E 2009 Math. Prob. Engin. 2009 1

    [9]

    Liu X D, Zhang J X 2008 International Journal of Computer Science and Network Security 8 64

    [10]

    Lorenz E 1963 J. Atmospheric Sciences 20 130

    [11]

    Li T Y, Yorke J A 1975 Amer. Math. 82 481

    [12]

    Edward O 1993 Chaos in dynamical systems (2nd Ed.) (Cambridge: Cambridge University Press) p34

    [13]

    Sheng L Y, Cao L L, Sun K H, Wen J 2005 Acta Phys. Sin. 54 4031 (in Chinese) [盛利元、曹莉凌、孙克辉、闻 姜 2005 54 4031]

    [14]

    Wang L, Wang F P, Wang Z J 2006 Acta Phys. Sin. 55 3964 (in Chinese) [王 蕾、汪芙平、王赞基 2006 55 3964]

    [15]

    Sheng L Y, Xiao Y Y, Sheng Z 2008 Acta Phys. Sin. 57 4007 (in Chinese) [盛利元、肖燕予、盛 喆 2008 57 4007]

    [16]

    Fridrich J 1998 Int. J. Bifurcation and Chaos 8 1259

  • [1]

    Claude E S 1949 Bell Sys. Tech. Journal 28 656

    [2]

    Shi Z, Lee R 2000 12th IEEE International Conference on Application-Specific Systems, Architectures, and Processors (ASAP 2000) Boston MA USA, IEEE Computer Society, July 10-12 2000 p138

    [3]

    Lee R, Shi Z, Yang X 2001 IEEE Micro. 21 56

    [4]

    Socek D, Li S, Magliveras S S 2005 International Conference on Security and Privacy for Emerging Areas in Communications Networks Athens Greece, IEEE Computer Society, September 5-9 2005 p208

    [5]

    Ye G D 2010 Patt. Recogn. Lett. 31 347

    [6]

    Yoon J W, Kim H 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 3998

    [7]

    Lasota A, Mackey M C 1997 Chaos, Fractals and noise-Stochastic Aspects of Dynamics (2nd Ed)(New York:Springer-Verlag)p230

    [8]

    Shahram E B, Mohammad E 2009 Math. Prob. Engin. 2009 1

    [9]

    Liu X D, Zhang J X 2008 International Journal of Computer Science and Network Security 8 64

    [10]

    Lorenz E 1963 J. Atmospheric Sciences 20 130

    [11]

    Li T Y, Yorke J A 1975 Amer. Math. 82 481

    [12]

    Edward O 1993 Chaos in dynamical systems (2nd Ed.) (Cambridge: Cambridge University Press) p34

    [13]

    Sheng L Y, Cao L L, Sun K H, Wen J 2005 Acta Phys. Sin. 54 4031 (in Chinese) [盛利元、曹莉凌、孙克辉、闻 姜 2005 54 4031]

    [14]

    Wang L, Wang F P, Wang Z J 2006 Acta Phys. Sin. 55 3964 (in Chinese) [王 蕾、汪芙平、王赞基 2006 55 3964]

    [15]

    Sheng L Y, Xiao Y Y, Sheng Z 2008 Acta Phys. Sin. 57 4007 (in Chinese) [盛利元、肖燕予、盛 喆 2008 57 4007]

    [16]

    Fridrich J 1998 Int. J. Bifurcation and Chaos 8 1259

  • [1] 刘远, 袁冀扬, 周心雨, 谷双全, 周沛, 穆鹏华, 李念强. 基于滤波反馈宽带平坦混沌信号的快速物理随机比特产生.  , 2022, 71(22): 224203. doi: 10.7498/aps.71.20221173
    [2] 干红平, 张涛, 花燚, 舒君, 何立军. 基于双极性混沌序列的托普利兹块状感知矩阵.  , 2021, 70(3): 038402. doi: 10.7498/aps.70.20201475
    [3] 吴洁宁, 王丽丹, 段书凯. 基于忆阻器的时滞混沌系统及伪随机序列发生器.  , 2017, 66(3): 030502. doi: 10.7498/aps.66.030502
    [4] 郭静波, 汪韧. 交替寻优生成元素幅值结合混沌随机相位构造循环测量矩阵.  , 2015, 64(13): 130702. doi: 10.7498/aps.64.130702
    [5] 郭静波, 汪韧. 基于混沌序列和RIPless理论的循环压缩测量矩阵的构造.  , 2014, 63(19): 198402. doi: 10.7498/aps.63.198402
    [6] 吴成茂. 离散Arnold变换改进及其在图像置乱加密中的应用.  , 2014, 63(9): 090504. doi: 10.7498/aps.63.090504
    [7] 孙克辉, 贺少波, 何毅, 尹林子. 混沌伪随机序列的谱熵复杂性分析.  , 2013, 62(1): 010501. doi: 10.7498/aps.62.010501
    [8] 萧宝瑾, 侯佳音, 张建忠, 薛路刚, 王云才. 混沌半导体激光器的弛豫振荡频率对随机序列速率的影响.  , 2012, 61(15): 150502. doi: 10.7498/aps.61.150502
    [9] 刘俊群. 斜置平面天线阵的近场-远场方向图分析.  , 2012, 61(23): 238401. doi: 10.7498/aps.61.238401
    [10] 李家标, 曾以成, 陈仕必, 陈家胜. 改进型Hénon映射生成混沌伪随机序列及性能分析.  , 2011, 60(6): 060508. doi: 10.7498/aps.60.060508
    [11] 陈小军, 李赞, 白宝明, 蔡觉平. 一种确定混沌伪随机序列复杂度的模糊关系熵测度.  , 2011, 60(6): 064215. doi: 10.7498/aps.60.064215
    [12] 张雪锋, 范九伦. 基于线性反馈移位寄存器和混沌系统的伪随机序列生成方法.  , 2010, 59(4): 2289-2297. doi: 10.7498/aps.59.2289
    [13] 罗松江, 丘水生, 骆开庆. 混沌伪随机序列的复杂度的稳定性研究.  , 2009, 58(9): 6045-6049. doi: 10.7498/aps.58.6045
    [14] 刘会师, 忻向军, 尹霄丽, 余重秀, 张琦. 切比雪夫光混沌发生器的优化.  , 2009, 58(4): 2231-2234. doi: 10.7498/aps.58.2231
    [15] 孙克辉, 谈国强, 盛利元. TD-ERCS离散混沌伪随机序列的复杂性分析.  , 2008, 57(6): 3359-3366. doi: 10.7498/aps.57.3359
    [16] 盛利元, 肖燕予, 盛 喆. 将混沌序列变换成均匀伪随机序列的普适算法.  , 2008, 57(7): 4007-4013. doi: 10.7498/aps.57.4007
    [17] 刘 奎, 丁宏林, 张贤高, 余林蔚, 黄信凡, 陈坤基. 量子点浮置栅量子线沟道三栅结构单电子场效应管存储特性的数值模拟.  , 2008, 57(11): 7052-7056. doi: 10.7498/aps.57.7052
    [18] 肖方红, 阎桂荣, 韩宇航. 混沌伪随机序列复杂度分析的符号动力学方法.  , 2004, 53(9): 2876-2881. doi: 10.7498/aps.53.2876
    [19] 蔡觉平, 李 赞, 宋文涛. 一种混沌伪随机序列复杂度分析法.  , 2003, 52(8): 1871-1876. doi: 10.7498/aps.52.1871
    [20] 吴锋民, 朱启鹏, 施建青, 吴自勤. 有限步扩散反应置限分形聚集.  , 1998, 47(4): 542-550. doi: 10.7498/aps.47.542
计量
  • 文章访问数:  10335
  • PDF下载量:  900
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-18
  • 修回日期:  2011-02-25
  • 刊出日期:  2011-11-15

/

返回文章
返回
Baidu
map