-
在雷达、通信等工程应用中,发射信号时间有限,需要快速混沌同步. 而传统同步算法收敛速度较慢. 针对该问题,文章给出了一种快速混沌同步算法. 根据Taylor展开式,设计非线性控制变量,使得误差方程控制矩阵满足同步判定条件,进一步优选控制矩阵,仅需一步运算,便可快速同步. 此外,考虑到实际工程中往往只发射一个状态变量,文章以典型的连续Duffing系统和离散logistic系统为例,设计了单一变量驱动的快速同步. 仿真结果表明,与常见的单一耦合和OPCL(open-plus-closed-loop)同步相比,此算法收敛速度快,抗噪声能力强,具有更强的实际工程意义.In radar, communication and other engineering applications, fast synchronization is needed because of the limited time of transmitting signal. However, the convergence rate of conventional synchronization is slow. To resolve the problem, a fast synchronization algorithm is proposed. According to Taylor expansion, nonlinear controller is designed to make the control matrix of error equation satisfy critical conditions for synchronization and further to optimize the control matrix, so fast synchronization can be achieved with only one step operation. In addition, given the practical engineering launches only one state variable, in this paper are take the typical continuous Duffing system and discrete Logistic system as examples and design the fast synchronization driven by only one variable. Finally, simulation results show that compared with common single coupling and OPCL synchronization, the proposed algorithm has fast convergence rate, strong anti-noise cap ability, and strong engineering practice significance.
-
Keywords:
- chaos /
- fast synchronization /
- anti-noise
[1] Alonge F, Branciforte M, Motta F 2009 IEEE Trans. Instrum. Meas. 58 318
[2] Pisarchik A N, Oliveras F R 2010 IEEE J. Quantum Electron 46 299
[3] Jiang F, Liu Z, Hu W, Bao B C 2010 Acta Phys. Sin. 59 116 (in Chinese) [蒋 飞、刘 中、胡 文、包伯成 2010 59 116 ]
[4] Jin J X, Qiu S S 2010 Acta Phys. Sin. 59 792 (in Chinese) [晋建秀、丘水生 2010 59 792 ]
[5] Xu Y C, Yang C L, Qu X D 2010 Chin. Phys. B 19 030516
[6] Jovic B, Unsworth C P 2010 Elec. Lett. 46 1
[7] Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 94 821
[8] Cheng L, Zhang R Y, Peng J H 2003 Acta Phys. Sin. 52 536 (in Chinese) [程 丽、张入元、彭建华 2003 52 536]
[9] Sorrentino F, Barlev G, Cohen A B, Edward O 2010 Chaos 20 013103
[10] Qin W Y, Su H, Yang Y F 2008 Acta Phys. Sin. 57 2704 (in Chinese) [秦卫阳、苏 浩、杨永峰 2008 57 2704]
[11] Grosu I 1997 Phys. Rev. E 56 3709
[12] Grosu I, Banerjee R, Roy P K, Dana S K 2009 Phys. Rev. E 80 016212
[13] Yang C Y, Zhang Q L, Lin Y P, Zhou L N 2007 IEEE Trans. Circuits Syst. Regul. Pap. 54 1142
[14] Carroll T L 2005 Chaos 15 013901
[15] Elhadj Z, Sprott J C 2008 Chaos 18 023119
[16] Carroll T L 2001 IEEE Trans. Circ. Syst. Fund. Theor. Appl. 48 1519
-
[1] Alonge F, Branciforte M, Motta F 2009 IEEE Trans. Instrum. Meas. 58 318
[2] Pisarchik A N, Oliveras F R 2010 IEEE J. Quantum Electron 46 299
[3] Jiang F, Liu Z, Hu W, Bao B C 2010 Acta Phys. Sin. 59 116 (in Chinese) [蒋 飞、刘 中、胡 文、包伯成 2010 59 116 ]
[4] Jin J X, Qiu S S 2010 Acta Phys. Sin. 59 792 (in Chinese) [晋建秀、丘水生 2010 59 792 ]
[5] Xu Y C, Yang C L, Qu X D 2010 Chin. Phys. B 19 030516
[6] Jovic B, Unsworth C P 2010 Elec. Lett. 46 1
[7] Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 94 821
[8] Cheng L, Zhang R Y, Peng J H 2003 Acta Phys. Sin. 52 536 (in Chinese) [程 丽、张入元、彭建华 2003 52 536]
[9] Sorrentino F, Barlev G, Cohen A B, Edward O 2010 Chaos 20 013103
[10] Qin W Y, Su H, Yang Y F 2008 Acta Phys. Sin. 57 2704 (in Chinese) [秦卫阳、苏 浩、杨永峰 2008 57 2704]
[11] Grosu I 1997 Phys. Rev. E 56 3709
[12] Grosu I, Banerjee R, Roy P K, Dana S K 2009 Phys. Rev. E 80 016212
[13] Yang C Y, Zhang Q L, Lin Y P, Zhou L N 2007 IEEE Trans. Circuits Syst. Regul. Pap. 54 1142
[14] Carroll T L 2005 Chaos 15 013901
[15] Elhadj Z, Sprott J C 2008 Chaos 18 023119
[16] Carroll T L 2001 IEEE Trans. Circ. Syst. Fund. Theor. Appl. 48 1519
计量
- 文章访问数: 8277
- PDF下载量: 631
- 被引次数: 0