-
Erbium oxide coatings were fabricated by midfrequency pulsed reactive magnetron sputtering by varying the deposition conditions with respect to the sputtering power from 78 W to 124 W and substrate temperature from room temperature to 677 ℃. Atomic force microscopy, nanoindentation, X-ray diffraction and grazing incidence X-ray diffraction were used to investigate the coatings’ surface morphology, mechanical properties and crystallization behaviors. Electrical properties of the coatings were also measured. Erbium oxide coatings fabricated by pulsed magnetron sputtering have high deposition rate, varying from 28 nm/min to 68nm/min. A monoclinic Er2O3 phase is obtained in the coatings. The crystalline quality of the coatings decreases with the increasing of the sputtering power. The diffraction intensity of monoclinic phase decreases as the substrate temperature was increased from room temperature to 500 ℃ and 677 ℃. It is believed that the high deposition rate and low substrate temperature could lead to the formation of the monoclinic Er2O3 coatings. The hardness and elastic modulus of the coatings deposited at substrate temperatures from room temperature to 677 ℃ vary from 11.9 GPa to 15.7 GPa and from 179 GPa to 225 GPa, respectively. The coatings deposited from room temperature to 677℃ all have high resistivity, varying from 1.5×1012 Ω ·cm to 3.1×1012 Ω ·cm, meeting the requirements of the insulating coatings in application to fusion reactor.
-
Keywords:
- erbium oxide /
- pulsed magnetron sputtering /
- monoclinic phase
[1] Liang J J, Chen W D, Wang Y Q, Chang Y, Wang Z G 2000 Chin. Phys. 9 0783
[2] Miritello M, Lo Savio R, Piro A M, Franzò G, Priolo F, Lacona F, Bongiorno C 2006 J. Appl. Phys. 100 013502
[3] Losurdo M, Giangregorio M M, Bruno G, Yang D X, Irene E A, Suvorova A A, Saunders M 2007 Appl. Phys. Lett. 91 091914
[4] Singh M P, Thakur C S, Shalini K, Bhat N, Shivashankar S A 2003 Appl. Phys. Lett. 83 2889
[5] Wong C P C, Salavy J F, Kim Y, Kirillov I, Rajendra Kumar E, Morley N B, Tanaka S, Wu Y C 2008 Fusion Eng. Des. 83 850
[6] Chen H, Zhou T, Lü R, Yang Z, Wu Z, Xia D 2009 J. Nucl. Mater. 386-388 904
[7] Pint B A, DeVan J H, DiStefano J R 2002 J. Nucl. Mater. 307-311 1344
[8] Levchuk D, Levchuk S, Maier H, Bolt H, Suzuki A 2007 J. Nucl. Mater. 367-370 1033
[9] Chikada T, Suzuki A, Yao Z Y, Sawada A, Terai T, Muroga T 2007 Fusion Eng. Des. 82 2572
[10] Sawada A, Suzuki A, Terai T 2006 Fusion Eng. Des. 81 579
[11] Yao Z Y, Suzuki A, Muroga T, Yeliseyeva O, Nagasaka T 2006 Fusion Eng. Des. 81 951
[12] Adelhelm C, Pickert T, Balden M, Rasinski M, Plocinski T, Ziebert C, Koch F, Maier H 2009 Scripta Mater. 61 789
[13] Tang M, Lu P, Valdez J A, Sickafus K E 2006 J. Appl. Phys. 99 063514
[14] Adachi G Y, Imanaka N 1998 Chem. Rev. 98 1479
[15] Guo Q X, Zhao Y S, Jiang C, Mao W L, Wang Z W, Zhang J Z, Wang Y J 2007 Inorg. Chem. 46 6164
[16] Kelly P J, Henderson P S, Arnell R D, Roche G A, Carter D 2000 J. Vac. Sci. Technol. A 18 2890
[17] Sproul W D 1998 Vacuum 51 641
[18] Ye Z Y, Zhang Q Y 2001 Chin. Phys. 10 0329
[19] Zhang Q Y, Ma T C, Pan Z Y, Tang J Y 2000 Acta Phys. Sin. 49 0297(in Chinese)[张庆瑜、 马腾才、 潘正瑛、 汤家镛 2000 49 0297]
[20] Wu F M, Shi J Q, Wu Z Q 2001 Acta Phys. sin. 50 1555(in Chinese)[吴锋民、 施建青、 吴自勤 2001 50 1555]
[21] Lan W, Liu X Q, Huang C M, Tang G M, Yang Y, Wang Y Y 2006 Acta Phys. Sin. 55 0748(in Chinese)[兰 伟、 刘雪芹、 黄春明、 唐国梅、 杨 扬、 王印月 2006 55 0748]
[22] -
[1] Liang J J, Chen W D, Wang Y Q, Chang Y, Wang Z G 2000 Chin. Phys. 9 0783
[2] Miritello M, Lo Savio R, Piro A M, Franzò G, Priolo F, Lacona F, Bongiorno C 2006 J. Appl. Phys. 100 013502
[3] Losurdo M, Giangregorio M M, Bruno G, Yang D X, Irene E A, Suvorova A A, Saunders M 2007 Appl. Phys. Lett. 91 091914
[4] Singh M P, Thakur C S, Shalini K, Bhat N, Shivashankar S A 2003 Appl. Phys. Lett. 83 2889
[5] Wong C P C, Salavy J F, Kim Y, Kirillov I, Rajendra Kumar E, Morley N B, Tanaka S, Wu Y C 2008 Fusion Eng. Des. 83 850
[6] Chen H, Zhou T, Lü R, Yang Z, Wu Z, Xia D 2009 J. Nucl. Mater. 386-388 904
[7] Pint B A, DeVan J H, DiStefano J R 2002 J. Nucl. Mater. 307-311 1344
[8] Levchuk D, Levchuk S, Maier H, Bolt H, Suzuki A 2007 J. Nucl. Mater. 367-370 1033
[9] Chikada T, Suzuki A, Yao Z Y, Sawada A, Terai T, Muroga T 2007 Fusion Eng. Des. 82 2572
[10] Sawada A, Suzuki A, Terai T 2006 Fusion Eng. Des. 81 579
[11] Yao Z Y, Suzuki A, Muroga T, Yeliseyeva O, Nagasaka T 2006 Fusion Eng. Des. 81 951
[12] Adelhelm C, Pickert T, Balden M, Rasinski M, Plocinski T, Ziebert C, Koch F, Maier H 2009 Scripta Mater. 61 789
[13] Tang M, Lu P, Valdez J A, Sickafus K E 2006 J. Appl. Phys. 99 063514
[14] Adachi G Y, Imanaka N 1998 Chem. Rev. 98 1479
[15] Guo Q X, Zhao Y S, Jiang C, Mao W L, Wang Z W, Zhang J Z, Wang Y J 2007 Inorg. Chem. 46 6164
[16] Kelly P J, Henderson P S, Arnell R D, Roche G A, Carter D 2000 J. Vac. Sci. Technol. A 18 2890
[17] Sproul W D 1998 Vacuum 51 641
[18] Ye Z Y, Zhang Q Y 2001 Chin. Phys. 10 0329
[19] Zhang Q Y, Ma T C, Pan Z Y, Tang J Y 2000 Acta Phys. Sin. 49 0297(in Chinese)[张庆瑜、 马腾才、 潘正瑛、 汤家镛 2000 49 0297]
[20] Wu F M, Shi J Q, Wu Z Q 2001 Acta Phys. sin. 50 1555(in Chinese)[吴锋民、 施建青、 吴自勤 2001 50 1555]
[21] Lan W, Liu X Q, Huang C M, Tang G M, Yang Y, Wang Y Y 2006 Acta Phys. Sin. 55 0748(in Chinese)[兰 伟、 刘雪芹、 黄春明、 唐国梅、 杨 扬、 王印月 2006 55 0748]
[22]
计量
- 文章访问数: 8604
- PDF下载量: 1905
- 被引次数: 0