搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

横向磁场中大挠度金属薄板的混沌振动

薛春霞 张善元 树学锋

引用本文:
Citation:

横向磁场中大挠度金属薄板的混沌振动

薛春霞, 张善元, 树学锋

The chaotic vibration of a metal plate with large deflection under a transverse magnetic field

Shu Xue-Feng, Xue Chun-Xia, Zhang Shan-Yuan
PDF
导出引用
  • 利用Karman关于板的大挠度理论,考虑涡电流在板中引起的Lorentz力,导出了在横向磁场和横向载荷共同作用下薄板的非线性运动方程.借助Bubnov-Galerkin法将非线性偏微分方程转化为含三次非线性项的常微分方程.在定性分析的基础上,利用次谐轨道的Melnikov函数给出了发生Smale马蹄型混沌运动的阈值条件,进而数值计算了系统的分岔图、相应的相图、Poincaré映射和时程曲线,给出了混沌运动的数字特征.分析结果表明:磁感应强度和外载荷都会影响系统的振动特性.
    By using Karman’s plate theory of large deflection, the nonlinear equation of motion of a thin metal plate with the coaction of a transverse uniform magnetic field and a transverse load is established. These equations consider the magnetic Lorentz force induced by the eddy current. Based on the Bubnov-Galerkin method, the nonlinear partial differential equation is transformed into a third-order nonlinear ordinary differential equation. By using the sub-harmonic orbit Melnikov function method, the criterion of the Smale-horseshoe chaos is also acquired. Furthermore, the chaotic motion is numerically simulated with Matlab. The bifurcation diagram, the phase curve, the Poincaré map and the evolution curve are calculated. The digital characteristics of the chaotic motions are provided based on the analysis. The analysis results show that the magnetic induction intensity and the external load may affect the vibration of the system.
    • 基金项目: 国家自然科学基金(批准号:10772129)资助的课题.
    [1]

    Bai X Z 1996 Advances in mech. 26 389(in Chinese) [白象忠 1996 力学进展 26 389]

    [2]

    Moon F C, Holmes P J 1979 J. Sound Vib. 65 275

    [3]

    Takashi H, Toshiaki K 1996 Phys. Lett. A 21 29

    [4]

    Hasanyan D J, Khachaturyan G M, Piliposyan G T 2001 Thin-Walled Structures 39 111

    [5]

    Gaganidze E, Esquinazi P, Ziese M 2000 J. Magnetism Magnetic Materials 210 49

    [6]

    Gao Y W,Zhou Y H,Zheng X J 2002 Acta Mech. Sin. 34 101(in Chinese) [高原文、周又和、郑晓静 2002 力学学报 34 101]

    [7]

    Sheng D F,Cheng C J 2004 International Journal of Solids and Structures 41 7287

    [8]

    Samoylenko S B, Lee W K 2007 Nonlinear Dynamics 47 405

    [9]

    Yang X L, Xu W, Sun Z K 2006 Acta Phys. Sin. 55 1678(in Chinese) [杨晓丽、徐 伟、孙中奎 2006 55 1678]

    [10]

    Lei Y M, Xu W 2007 Acta Phys. Sin. 56 5103(in Chinese) [雷佑铭、徐伟 2007 56 5103]

    [11]

    Ji Y, Bi Q S 2009 Acta Phys. Sin. 58 4431 (in Chinese) [季颖、毕勤胜 2009 58 4431]

    [12]

    Wang L, Xu W, Li Y 2008 Chin. Phys. B 17 2446

    [13]

    Li X C, Xu W, Li R H 2008 Chin. Phys. B 17 557

    [14]

    Xing Z C, Xu W, Rong H W, Wang B Y 2009 Acta Phys. Sin. 58 824(in Chinese) [邢真慈、徐 伟、戎海武、王宝燕 2009 58 824]

    [15]

    Zhou P, Wei L J, Cheng X F 2009 Acta Phys. Sin. 58 5201(in Chinese) [周 平、危丽佳、程雪峰 2009 58 5201]

    [16]

    Vol’emer A S 1959 Flexible plates and shells (Beijing: Science Press of China) (in Chinese) [沃耳密尔 A.S.著 卢文达等译 1959 柔韧板与柔韧壳(北京:中国科学出版社)]

    [17]

    Zeeman E C 1976 Bull. Inst. Math. Applic. 12 207

    [18]

    Holmes P J, Rand D A 1976 J. Sound Vib. 44 237

    [19]

    Guckenheimer J, Holmes P J 1983 Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (New York: Springer-Verlag)

    [20]

    Thompson J M T, Stewart H B 2002 Nonlinear Dynamics and Chaos (2nd edition) (New York: John Wiley & Sons)

    [21]

    Ueda Y 1980 In New Approaches to Nonlinear Problems in Dynamics p311 SIAM: Philadelphia

    [22]

    Zhang S Y,Liu Z F, Lu G Y 2009 Acta Mech. Solida Sin. 22 287(in Chinese) [张善元、刘志芳、路国运 2009 固体力学学报 22 287]

    [23]

    Liu Z R 1994 Perturbation Criteria for Chaos(Shanghai: Scientific and Technological Education Publishing House) p28 (in Chinese)[刘曾荣 1994 混沌的微扰判据(上海:上海科技教育出版社)第28页]

  • [1]

    Bai X Z 1996 Advances in mech. 26 389(in Chinese) [白象忠 1996 力学进展 26 389]

    [2]

    Moon F C, Holmes P J 1979 J. Sound Vib. 65 275

    [3]

    Takashi H, Toshiaki K 1996 Phys. Lett. A 21 29

    [4]

    Hasanyan D J, Khachaturyan G M, Piliposyan G T 2001 Thin-Walled Structures 39 111

    [5]

    Gaganidze E, Esquinazi P, Ziese M 2000 J. Magnetism Magnetic Materials 210 49

    [6]

    Gao Y W,Zhou Y H,Zheng X J 2002 Acta Mech. Sin. 34 101(in Chinese) [高原文、周又和、郑晓静 2002 力学学报 34 101]

    [7]

    Sheng D F,Cheng C J 2004 International Journal of Solids and Structures 41 7287

    [8]

    Samoylenko S B, Lee W K 2007 Nonlinear Dynamics 47 405

    [9]

    Yang X L, Xu W, Sun Z K 2006 Acta Phys. Sin. 55 1678(in Chinese) [杨晓丽、徐 伟、孙中奎 2006 55 1678]

    [10]

    Lei Y M, Xu W 2007 Acta Phys. Sin. 56 5103(in Chinese) [雷佑铭、徐伟 2007 56 5103]

    [11]

    Ji Y, Bi Q S 2009 Acta Phys. Sin. 58 4431 (in Chinese) [季颖、毕勤胜 2009 58 4431]

    [12]

    Wang L, Xu W, Li Y 2008 Chin. Phys. B 17 2446

    [13]

    Li X C, Xu W, Li R H 2008 Chin. Phys. B 17 557

    [14]

    Xing Z C, Xu W, Rong H W, Wang B Y 2009 Acta Phys. Sin. 58 824(in Chinese) [邢真慈、徐 伟、戎海武、王宝燕 2009 58 824]

    [15]

    Zhou P, Wei L J, Cheng X F 2009 Acta Phys. Sin. 58 5201(in Chinese) [周 平、危丽佳、程雪峰 2009 58 5201]

    [16]

    Vol’emer A S 1959 Flexible plates and shells (Beijing: Science Press of China) (in Chinese) [沃耳密尔 A.S.著 卢文达等译 1959 柔韧板与柔韧壳(北京:中国科学出版社)]

    [17]

    Zeeman E C 1976 Bull. Inst. Math. Applic. 12 207

    [18]

    Holmes P J, Rand D A 1976 J. Sound Vib. 44 237

    [19]

    Guckenheimer J, Holmes P J 1983 Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (New York: Springer-Verlag)

    [20]

    Thompson J M T, Stewart H B 2002 Nonlinear Dynamics and Chaos (2nd edition) (New York: John Wiley & Sons)

    [21]

    Ueda Y 1980 In New Approaches to Nonlinear Problems in Dynamics p311 SIAM: Philadelphia

    [22]

    Zhang S Y,Liu Z F, Lu G Y 2009 Acta Mech. Solida Sin. 22 287(in Chinese) [张善元、刘志芳、路国运 2009 固体力学学报 22 287]

    [23]

    Liu Z R 1994 Perturbation Criteria for Chaos(Shanghai: Scientific and Technological Education Publishing House) p28 (in Chinese)[刘曾荣 1994 混沌的微扰判据(上海:上海科技教育出版社)第28页]

  • [1] 林基艳, 孙姣夏, 林书玉. 大尺寸三维超声振动系统的智能优化设计.  , 2024, 73(8): 084304. doi: 10.7498/aps.73.20240006
    [2] 赵其进, 毛保全, 白向华, 杨雨迎, 陈春林. 横向磁场对绝缘/导电圆管中磁气体动力学流动和传热特性的影响.  , 2022, 71(16): 164702. doi: 10.7498/aps.71.20220051
    [3] 董帅, 纪祥勇, 李春曦. 横向磁场作用下Taylor-Couette湍流流动的大涡模拟.  , 2021, 70(18): 184702. doi: 10.7498/aps.70.20210389
    [4] 赵甜甜, 林书玉, 段祎林. 类声子晶体结构对超声塑料焊接工具横向振动的抑制.  , 2018, 67(22): 224207. doi: 10.7498/aps.67.20181150
    [5] 宋其晖, 石万元. 横向静磁场对电磁悬浮液滴稳定性的影响.  , 2014, 63(24): 248504. doi: 10.7498/aps.63.248504
    [6] 董烨, 董志伟, 杨温渊, 周前红, 周海京. 介质窗横向电磁场分布下的次级电子倍增效应.  , 2013, 62(19): 197901. doi: 10.7498/aps.62.197901
    [7] 阮 锴, 张淳民, 赵葆常. 高层大气风场探测改型大光程差Sagnac干涉仪全视场角光程差与横向剪切量的精确计算.  , 2008, 57(9): 5435-5441. doi: 10.7498/aps.57.5435
    [8] 魏建华, 解士杰, 梅良模. 金属卤化物中的晶格振动.  , 2000, 49(10): 2027-2032. doi: 10.7498/aps.49.2027
    [9] 黄勇林, 巴恩旭. 横向磁场导致CO2激光器混沌运转及其奇异吸引子的观测.  , 1993, 42(6): 930-934. doi: 10.7498/aps.42.930
    [10] 陈春, 李正中, 许望. 磁场中的重电子金属.  , 1992, 41(6): 977-984. doi: 10.7498/aps.41.977
    [11] 方道腴. 在横向磁场中真空电弧后退速度和阴极温度的关系.  , 1983, 32(7): 838-844. doi: 10.7498/aps.32.838
    [12] 胡希伟, 霍裕平, 陈正雄, 张澄. 等离子体在均匀强磁场中的横向输运系数.  , 1981, 30(3): 315-324. doi: 10.7498/aps.30.315
    [13] 栾心芙. 强磁场中n型锗的横向磁阻.  , 1965, 21(5): 1015-1037. doi: 10.7498/aps.21.1015
    [14] 陈式刚. 强磁场下横向输运过程的微扰理论.  , 1964, 20(7): 579-595. doi: 10.7498/aps.20.579
    [15] 葛庭燧, 周本濂. 用压电晶片法研究铁在稳定磁场中作横振动时的声频内耗.  , 1957, 13(2): 142-149. doi: 10.7498/aps.13.142
    [16] 黄择言. 一边平夾另一边受均布力矩作用的环形薄板大挠度问题.  , 1957, 13(4): 313-338. doi: 10.7498/aps.13.313
    [17] 黄择言. 均匀载荷下固定边环形薄板的大挠度问题.  , 1957, 13(4): 294-312. doi: 10.7498/aps.13.294
    [18] 林鸿荪. 任意横向载荷下弹性圆形及圆环形薄板的弯曲.  , 1956, 12(4): 360-375. doi: 10.7498/aps.12.360
    [19] 顾璆琳. 在均布载荷作用下受有预加张力的弹性圆薄膜大挠度问题.  , 1956, 12(4): 319-338. doi: 10.7498/aps.12.319
    [20] 钱伟长, 叶开沅. 圆薄板大撓度问题.  , 1954, 10(3): 209-238. doi: 10.7498/aps.10.209
计量
  • 文章访问数:  7951
  • PDF下载量:  675
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-09-09
  • 修回日期:  2009-12-30
  • 刊出日期:  2010-09-15

/

返回文章
返回
Baidu
map