搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米复合永磁材料中软磁性相交换硬化的研究

张帅 陈喜芳 阴津华 张宏伟 陈京兰 姜宏伟 吴光恒

引用本文:
Citation:

纳米复合永磁材料中软磁性相交换硬化的研究

张帅, 陈喜芳, 阴津华, 张宏伟, 陈京兰, 姜宏伟, 吴光恒

Magnetic hardening of soft phase in nanocomposite permanent magnetic materials by exchange coupling

Yin Jin-Hua, Chen Xi-Fang, Zhang Shuai, Zhang Hong-Wei, Chen Jing-Lan, Jiang Hong-Wei, Wu Guang-Heng
PDF
导出引用
  • 本文就纳米复合永磁材料中软磁相被交换硬化问题,从一维模型和三维模拟计算进行了分析研究. 一维和三维各向异性样品研究表明,在相同微结构下,当硬磁相的各向异性降低时,除矫顽力降低外,在磁矩全部反转之前退磁曲线是一样的. 因此,硬磁相各向异性的降低不会导致最大磁能积(BH)max增大和剩磁增加. 对于三维各向同性样品的模拟计算表明,降低硬磁相的各向异性会使剩磁和(BH)max都明显降低. 因此,增强硬磁相的各向异性并增大硬磁相晶粒尺寸是提高
    In this work, the issue of magentic hardening of soft phase in nanocomposite permanent magnetic materials has been investigated using one-and three-dimensional models. For the same microstructure, it is found that the coercivity is decreased and the low-field demagnetization curve keeps unchanged when the anisotropy constant of magnetic hard phase is decreased in anisotropic one-or three-dimensional samples. Therefore, the drop in anisotropy of magnetic hard phase will not lead to the increase of remanence and maximum energy product (BH)max. According to the simulation results of isotropic three-dimension samples, both the remanence and (BH)max will be obviously decreased by the drop in anisotropy. As a result, enhancing the anisotropy and/or enlarging the grain size of magnetic hard phase is one of the means to improve the hard magnetic properties of nanocomposite permanent magnetic materials.
    • 基金项目: 国家自然科学基金(批准号:10774178)和北京市教育委员会学科与研究生教育建设项目专项资助的课题.
    [1]

    Coehoorn R, Mooji D B, Waard C 1989 J. Magn. Magn. Mater. 80 101

    [2]

    Kneller E F, Hawig R 1991 IEEE Trans. On. Magn.27 3588

    [3]

    Skomski R, Coey J M D, 1993 Phys. Rev. B 48 15812

    [4]

    Goll D, Seeger M, Kronmuller H 1998 J. Magn. Magn. Mater. 185 49

    [5]

    Liu W, Zhang Z D, Liu J P, Chen L J, He L L, Liu Y, Sun X K, Sellmyer D J 2002 Adv. Mater. 14 1832

    [6]

    Liu S, Higgins A, Shin E, Bauser S, Chen C, Lee D, Shen Y, He Y, Huang M Q 2006 IEEE Trans. On. Magn. 42 2912

    [7]

    Yue M, Niu P L, Li Y L, Zhang D T, Liu W Q, Zhang J X, Chen C H, Liu S, Lee D, Higgins A 2008 J. Appl. Phys. 103 07E101

    [8]

    Zhao T, Xiao Q F, Zhang Z D, Dahlgren M, Grossinger R, Buschow K H J, Boer F R 1999 Appl. Phys. Lett. 75 02298

    [9]

    Chen W, Gao R W, Liu L M, Zhu M G, Han G B, Liu H Q, Li W 2004 Mater. Sci. Eng. B 110 107

    [10]

    Zhang M, Zhang Z D, Sun X K, Liu W, Geng D Y, Jin X M, You C Y, Zhao X G 2004 J. Alloys Compd. 372 267

    [11]

    Yang S, Song X P, Gu B X, Du Y W 2005 J. Alloys and Comp. 394 1

    [12]

    Liu Z W, Liu Y, Deheri P K, Ramanujan R V, Davies H A 2009 J. Magn. Magn. Mater. 321 2290

    [13]

    Zhang H W, Li B H, Wang J, Zhang J, Zhang S Y, Shen B G 2000 J. Phys. D: Appl. Phys. 33 3022

    [14]

    Fischer R, Kronmüller H 1996 Phys. Rev. B 54 7284

    [15]

    Li B H, Zhang H W, Zhang J, Wang Y, Zhang S Y 2001 Chin. Phys. 10 1054

    [16]

    Zhang H W, Zhao T Y, Rong C B, Zhang S Y, Han B S, Shen B G 2003 J. Magn. Magn. Mater. 267 224

    [17]

    Liu J P, Skomski R, Liu Y, Sellmyer D J 2000 J. Appl. Phys. 87 6740

    [18]

    Yin J H, Sun Z G, Z. R. Zhang Z R, Zhang H W, Shen B G 2001 J. Appl. Phys. 89 8351

    [19]

    Galindo J T E, Bhuiya A W, G'omez F R, Aquino J A M, Botez C E 2008 J. Phys. D: Appl. Phys. 41 095008

    [20]

    Zhang H W, Rong C B, Du X B, Zhang S Y, Shen B G 2004 J. Magn. Magn. Mater. 278 127

    [21]

    Zhang H W, Sun Z G, Zhang S Y, Han B S, Shen B G, Tung I C, Chin T S 1999 Phys. Rev. B 60 64

  • [1]

    Coehoorn R, Mooji D B, Waard C 1989 J. Magn. Magn. Mater. 80 101

    [2]

    Kneller E F, Hawig R 1991 IEEE Trans. On. Magn.27 3588

    [3]

    Skomski R, Coey J M D, 1993 Phys. Rev. B 48 15812

    [4]

    Goll D, Seeger M, Kronmuller H 1998 J. Magn. Magn. Mater. 185 49

    [5]

    Liu W, Zhang Z D, Liu J P, Chen L J, He L L, Liu Y, Sun X K, Sellmyer D J 2002 Adv. Mater. 14 1832

    [6]

    Liu S, Higgins A, Shin E, Bauser S, Chen C, Lee D, Shen Y, He Y, Huang M Q 2006 IEEE Trans. On. Magn. 42 2912

    [7]

    Yue M, Niu P L, Li Y L, Zhang D T, Liu W Q, Zhang J X, Chen C H, Liu S, Lee D, Higgins A 2008 J. Appl. Phys. 103 07E101

    [8]

    Zhao T, Xiao Q F, Zhang Z D, Dahlgren M, Grossinger R, Buschow K H J, Boer F R 1999 Appl. Phys. Lett. 75 02298

    [9]

    Chen W, Gao R W, Liu L M, Zhu M G, Han G B, Liu H Q, Li W 2004 Mater. Sci. Eng. B 110 107

    [10]

    Zhang M, Zhang Z D, Sun X K, Liu W, Geng D Y, Jin X M, You C Y, Zhao X G 2004 J. Alloys Compd. 372 267

    [11]

    Yang S, Song X P, Gu B X, Du Y W 2005 J. Alloys and Comp. 394 1

    [12]

    Liu Z W, Liu Y, Deheri P K, Ramanujan R V, Davies H A 2009 J. Magn. Magn. Mater. 321 2290

    [13]

    Zhang H W, Li B H, Wang J, Zhang J, Zhang S Y, Shen B G 2000 J. Phys. D: Appl. Phys. 33 3022

    [14]

    Fischer R, Kronmüller H 1996 Phys. Rev. B 54 7284

    [15]

    Li B H, Zhang H W, Zhang J, Wang Y, Zhang S Y 2001 Chin. Phys. 10 1054

    [16]

    Zhang H W, Zhao T Y, Rong C B, Zhang S Y, Han B S, Shen B G 2003 J. Magn. Magn. Mater. 267 224

    [17]

    Liu J P, Skomski R, Liu Y, Sellmyer D J 2000 J. Appl. Phys. 87 6740

    [18]

    Yin J H, Sun Z G, Z. R. Zhang Z R, Zhang H W, Shen B G 2001 J. Appl. Phys. 89 8351

    [19]

    Galindo J T E, Bhuiya A W, G'omez F R, Aquino J A M, Botez C E 2008 J. Phys. D: Appl. Phys. 41 095008

    [20]

    Zhang H W, Rong C B, Du X B, Zhang S Y, Shen B G 2004 J. Magn. Magn. Mater. 278 127

    [21]

    Zhang H W, Sun Z G, Zhang S Y, Han B S, Shen B G, Tung I C, Chin T S 1999 Phys. Rev. B 60 64

  • [1] 缪培贤, 王涛, 史彦超, 高存绪, 蔡志伟, 柴国志, 陈大勇, 王建波. 在开磁路中利用抽运-检测型铷原子磁力仪测量软磁材料的矫顽力.  , 2022, 71(24): 244206. doi: 10.7498/aps.71.20221618
    [2] 李柱柏, 李赟, 秦渊, 张雪峰, 沈保根. 稀土永磁体及复合磁体反磁化过程和矫顽力.  , 2019, 68(17): 177501. doi: 10.7498/aps.68.20190364
    [3] 肖俊儒, 刘仲武, 楼华山, 詹慧雄. 利用Pr70Cu30晶界扩散改善烧结钕铁硼废料矫顽力的研究.  , 2018, 67(6): 067502. doi: 10.7498/aps.67.20172551
    [4] 侯志鹏, 苏峰, 王文全. 三元Co79Zr18Cr3合金中高矫顽力.  , 2014, 63(8): 087501. doi: 10.7498/aps.63.087501
    [5] 张嵩波, 王方标, 李发铭, 温戈辉. 高温高压方法合成碳包覆-Fe2O3纳米棒及其磁学性能.  , 2014, 63(10): 108101. doi: 10.7498/aps.63.108101
    [6] 彭懿, 赵国平, 吴绍全, 斯文静, 万秀琳. 不同易轴取向下对Nd2Fe14B/Fe65Co35磁性双层膜的微磁学模拟.  , 2014, 63(16): 167505. doi: 10.7498/aps.63.167505
    [7] 郭子政, 胡旭波. 应力对铁磁薄膜磁滞损耗和矫顽力的影响.  , 2013, 62(5): 057501. doi: 10.7498/aps.62.057501
    [8] 邱学军, 张云鹏, 何正红, 白 浪, 刘国磊, 王 跃, 陈 鹏, 熊祖洪. 矫顽力可调的多孔硅基Fe膜.  , 2006, 55(11): 6101-6107. doi: 10.7498/aps.55.6101
    [9] 陈宪锋. R2Fe14B型永磁材料中第二磁晶各向异性常数对反磁化过程的影响.  , 2005, 54(8): 3856-3861. doi: 10.7498/aps.54.3856
    [10] 陈允忠, 贺淑莉, 张宏伟, 陈仁杰, 荣传兵, 孙继荣, 沈保根. 纳米复合永磁Pr9Fe74Co12B5Snx(x=0, 0.5)的磁化行为与磁黏滞性.  , 2005, 54(12): 5890-5894. doi: 10.7498/aps.54.5890
    [11] 史慧刚, 司明苏, 薛德胜. 段化(A/B)m复合纳米线阵列的矫顽力机理.  , 2005, 54(7): 3402-3407. doi: 10.7498/aps.54.3402
    [12] 贺淑莉, 张宏伟, 荣传兵, 陈仁杰, 孙继荣, 沈保根. 晶粒易轴取向度对纳米晶永磁Pr2Fe14B磁性的影响.  , 2005, 54(7): 3408-3413. doi: 10.7498/aps.54.3408
    [13] 翁臻臻, 冯 倩, 黄志高, 都有为. 混合磁性薄膜矫顽力及阶梯效应的微磁学及Monte Carlo研究.  , 2004, 53(9): 3177-3185. doi: 10.7498/aps.53.3177
    [14] 张宏伟, 荣传兵, 张绍英, 沈保根. 高性能纳米复合永磁材料的模拟计算研究.  , 2004, 53(12): 4347-4352. doi: 10.7498/aps.53.4347
    [15] 荣传兵, 张宏伟, 张 健, 张绍英, 沈保根. 纳米晶永磁中面缺陷对畴壁钉扎机理的研究.  , 2003, 52(3): 708-712. doi: 10.7498/aps.52.708
    [16] 张晓渝, 陈亚杰. 磁性颗粒复合体磁渗流区矫顽力异常的研究.  , 2003, 52(8): 2052-2056. doi: 10.7498/aps.52.2052
    [17] 高汝伟, 冯维存, 王 标, 陈 伟, 韩广兵, 张 鹏, 刘汉强, 李 卫, 郭永权, 李岫梅. 纳米复合永磁材料的有效各向异性与矫顽力.  , 2003, 52(3): 703-707. doi: 10.7498/aps.52.703
    [18] 张宏伟, 荣传兵, 张 健, 张绍英, 沈保根. 纳米晶永磁Pr2Fe14B微磁学有限元法的模拟计算研究.  , 2003, 52(3): 718-721. doi: 10.7498/aps.52.718
    [19] 张宏伟, 荣传兵, 张 健, 张绍英, 沈保根. 纳米晶永磁Pr8Fe87B5反磁化机理研究.  , 2003, 52(3): 722-725. doi: 10.7498/aps.52.722
    [20] 于冬亮, 杨绍光, 都有为. Co纳米孔洞模板的制备和磁性.  , 2002, 51(8): 1784-1787. doi: 10.7498/aps.51.1784
计量
  • 文章访问数:  9017
  • PDF下载量:  732
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-10-28
  • 修回日期:  2010-01-21
  • 刊出日期:  2010-09-15

/

返回文章
返回
Baidu
map