Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An end-to-end model for ablation-plasma evolution-radiation in nanosecond laser-target interaction

ZHOU Ying WU Jian SUN Hao LI Jinghui LI Xiaoxuan HUANG Shuzhi HE Jiayao LIU Xingyu HANG Yuhua PEI Cuixiang LI Xingwen

Citation:

An end-to-end model for ablation-plasma evolution-radiation in nanosecond laser-target interaction

ZHOU Ying, WU Jian, SUN Hao, LI Jinghui, LI Xiaoxuan, HUANG Shuzhi, HE Jiayao, LIU Xingyu, HANG Yuhua, PEI Cuixiang, LI Xingwen
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The interaction of nanosecond laser pulses with metallic materials involves multiple complex physical processes, and constructing a self-consistent model capable of uniformly describing all stages remains a significant challenge. This work establishes a multi-physics coupled model for pure iron, encompassing laser energy deposition, solid-liquid phase transition, gas-liquid interfacial kinetic transport, plasma expansion and ionization, and spectral radiation. The numerical solution employs a partitioned approach, utilizing an implicit compact difference scheme for the target region and a Mac-Cormack explicit scheme for the ambient atmosphere, to simulate the ablation dynamics.
    The simulations elucidate the emergence of plasma shielding and its inhibitory effect on the evaporation process. They confirm that the early-stage ablation products are primarily transported via a supersonic expansion mode, which accounts for 81.6% of the total ablated mass transfer. The model successfully captures the complete evolution of the plasma plume from a high-temperature, highly ionized state (dominated by Fe3+) to a low-temperature, neutral atomic state (dominated by Fe0). Based on this, spectral calculations demonstrate the dynamic evolution of radiative characteristics from an early stage featuring a “strong continuum background dominated by ion lines” to a later stage where “the continuum attenuates, atomic lines become prominent, and self-absorption appears”. The emergence of self-absorption proves the model’s capability to effectively capture the optical thickness effects arising from spatial inhomogeneity within the plasma.
    Through systematic comparison with experimentally measured spectra and calculated results from the PrismSPECT and NIST LIBS spectral programs, the model presented here achieved the highest comprehensive scores in quantitative evaluations across multiple channels. This validates the necessity and superiority of the full-chain self-consistent modeling approach over traditional methods relying on spatial averaging or the optically thin approximation, particularly in describing plasma inhomogeneity and radiation transport. It also provides a numerical simulation framework for applications such as laser processing parameter optimization, quantitative spectroscopic analysis, and the design of novel plasma light sources.
  • [1]

    Wu J, Qiu Y, Li X W, Yu H, Zhang Z, Qiu A C 2020 J. Phys. D: Appl. Phys. 53 023001

    [2]

    Liu J B, Zhang D H Y, Fu Y Y 2023 New J. Phys. 25 122001

    [3]

    Wu J, Zhou Y, Chen M, Li X 2025 J. Phys. D: Appl. Phys. 58 143004

    [4]

    Wen S B, Mao X L, Greif R, Russo R E 2007 J. Appl. Phys. 102 043103

    [5]

    Bleiner D, Chen Z Y, Autrique D, Bogaerts A 2006 J. Anal. At. Spectrom. 21 910

    [6]

    Vanraes P, Venugopalan S P, Bogaerts A 2021 Appl. Phys. Rev. 8 041305

    [7]

    Yin P Q, Xu B P, Liu Y H, Wang Y S, Zhao W, Tang J 2024 Acta Phys. Sin. 73 095202 (in Chinese) [尹培琪,许博坪,刘颖华,王屹山,赵卫,汤洁 2024 73 095202]

    [8]

    Zhang D-H-Y, Liu J-B, Fu Y-Y 2024 Acta Phys. Sin. 73 025201 (in Chinese) [张东荷雨,刘金宝,付洋洋2024 73 025201]

    [9]

    Shabanov S V, Gornushkin I B 2014 Spectrochim. Acta, Part B 100 147

    [10]

    Lu Q M, Mao S S, Mao X L, Russo R E 2008 J. Appl. Phys. 104 083301

    [11]

    Gaft M, Nagli L, Gornushkin I, Raichlin Y 2020 Spectrochim. Acta, Part B 173 105989

    [12]

    Anisimov S I, Luk'yanchuk B S 2002 Phys. Usp. 45 293

    [13]

    Knight C J 1979 Aiaa J 17 519

    [14]

    Fryxell B, Olson K, Ricker P, Timmes F X, Zingale M, Lamb D Q, MacNeice P, Rosner R, Truran J W, Tufo H 2000 Astrophys. J. Suppl. Ser. 131 273

    [15]

    Guthikonda N, Kameswari D P S L, Manikanta E, Shiva S S, Harsha S S, Ikkurthi V R, Kiran P P 2023 J. Phys. D: Appl. Phys. 56 305501

    [16]

    Pert G J 2009 J. Plasma Phys. 35 43

    [17]

    Al-Khateeb A, Doyle L A, El-Astal A H, Lamb M J, Lewis C L S, Martin G W, Morrow T, Pert G J, Riley D, Weaver I, Williamson T P 1999 Appl. Phys. A 69 S479

    [18]

    Hill M, Wagenaars E 2022 Photonics 9 937

    [19]

    Basko M M, Sasorov P V, Murakami M, Novikov V G, Grushin A S 2012 Plasma Phys. Controlled Fusion 54 055003

    [20]

    Torretti F, Sheil J, Schupp R, Basko M M, Bayraktar M, Meijer R A, Witte S, Ubachs W, Hoekstra R, Versolato O O, Neukirch A J, Colgan J 2020 Nat. Commun. 11 2334

    [21]

    MacFarlane J J, Golovkin I E, Woodruff P R, Kulkarni S K, Hall I M 2013 Simulation of plasma ionization and spectral properties with PrismSPECT p1-1

    [22]

    MacFarlane J J, Golovkin I E, Woodruff P R 2006 J. Quant. Spectrosc. Radiat. Transfer 99 381

    [23]

    MacFarlane J J, Golovkin I E, Wang P, Woodruff P R, Pereyra N A 2007 High Energy Density Phys. 3 181

    [24]

    Joshi T R, Bailly-Grandvaux M, Turner R E, Spielman R B, Garay J E, Beg F N 2023 Phys. Plasma 30 122109

    [25]

    Ralchenko Y, Kramida A 2020 Atoms 8 56

    [26]

    Veis P, Marín-Roldán A, Kristof J 2018 Plasma Sources Sci. Technol. 27 095001

    [27]

    Wang J, Zhang L, Wang S, Su M, Sun D, Han J, Xia G, Dong C, Min Q, Ma W, Dong L, Yin W, Xiao L, Jia S 2021 Plasma Sci. Technol 23 035001

    [28]

    Palya A, Ranjbar O A, Lin Z, Volkov A N 2019 Int. J. Heat Mass Transfer 132 1029

    [29]

    Gornushkin I, Shabanov S, Omenetto N, Winefordner J 2006 J. Appl. Phys. 100 073304

    [30]

    Zeifman M I, Garrison B J, Zhigilei L V 2002 J. Appl. Phys. 92 2181

    [31]

    Heltemes T A, Moses G A 2012 Comput. Phys. Commun. 183 2629

    [32]

    Faik S, Tauschwitz A, Iosilevskiy I 2018 Comput. Phys. Commun. 227 117

    [33]

    More R M, Warren K H, Young D A, Zimmerman G B 1988 Physics of Fluids 31 3059

    [34]

    Haxhimali T, Echeverria M, Najjar F, Tzeferacos P, Ali S J, Park H S, Eggert J, Huntington C, Morgan B, Ping Y, Rinderknecht H G, Saunders A M 2020 Shock Compression of Condensed Matter - 2019 2272 120006

    [35]

    Noble C, Anderson A, Barton N, Bramwell J, Capps A, Chang M, Chou J, Dawson D, Diana E, Dunn T, Faux D, Fisher A, Greene P, Heinz I, Kanarska Y, Khairallah S, Liu B, Margraf J, Nichols A, White J 2017 ALE3D: An Arbitrary Lagrangian-Eulerian Multi-Physics Code

    [36]

    Min Q, Xu Z Y, He S Q, Lu H D, Liu X B, Shen R Z, Wu Y H, Pan Q K, Zhao C X, Chen F, Su M G, Dong C Z 2024 Comput. Phys. Commun. 302 109242

    [37]

    Min Q, Wang G D, He C W, He S Q, Lu H D, Liu X B, Wu Y H, Su M G, Dong C Z 2025 Acta Phys. Sin. 74 033201 (in Chinese) [敏琦,王国栋,何朝伟,何思奇,卢海东,刘兴邦,武艳红,苏茂根,董晨钟 2025 74 033201]

    [38]

    Min Q, Su M, Cao S, Sun D, O'Sullivan G, Dong C 2016 Opt. Lett. 41 5282

    [39]

    Bulgakova N M, Bulgakov A V, Babich L P 2004 Appl. Phys. A 79 1323

    [40]

    Anisimov S I 1968 Soviet Physics Jetp-Ussr 27 182

    [41]

    Nosrati Y, Tavassoli S H, Hassanimatin M M, Safi A 2020 Phys. Plasma 27 023301 11

    [42]

    Fairbanks D F, Wilke C R 2002 Industrial & Engineering Chemistry 42 471

    [43]

    Gornushkin I B, Stevenson C L, Smith B W, Omenetto N, Winefordner J D 2001 Spectrochim. Acta, Part B 56 1769

    [44]

    Huang X, Guo R, Ge Y 2014 Chinese Journal of Engineering Mathematics 31 371

    [45]

    Zhou Y, Wu J, Shi M, Chen M, Li J, Guo X, Hang Y, Pei C, Li X 2025 Appl. Phys. Lett. 126 034103

  • [1] Zhang Dong-He-Yu, Liu Jin-Bao, Fu Yang-Yang. Multiphysics modeling and simulations of laser-sustained plasmas. Acta Physica Sinica, doi: 10.7498/aps.73.20231056
    [2] Lu Yun-Jie, Tao Tao, Zhao Bin, Zheng Jian. Separation of ion component from solid hydrocarbon materials by laser ablation. Acta Physica Sinica, doi: 10.7498/aps.72.20230013
    [3] Ye Hao, Huang Yin-Bo, Wang Chen, Liu Guo-Rong, Lu Xing-Ji, Cao Zhen-Song, Huang Yao, Qi Gang, Mei Hai-Ping. Measurement of uranium isotope ratio by laser ablation absorption spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.70.20210193
    [4] Cai Song, Chen Gen-Yu, Zhou Cong, Zhou Feng-Lin, Li Guang. Research and application of plasma recoil pressure physical model for pulsed laser ablation material. Acta Physica Sinica, doi: 10.7498/aps.66.134205
    [5] Duan Xing-Yue, Li Xiao-Kang, Cheng Mou-Sen, Li Gan. Numerical investigation on shielding properties of the laser ablation plume of polymer doped metal. Acta Physica Sinica, doi: 10.7498/aps.65.197901
    [6] Kang Xiao-Wei, Chen Long, Chen Jie, Sheng Zheng-Ming. Femtosecond laser ablation of an aluminum target in air. Acta Physica Sinica, doi: 10.7498/aps.65.055204
    [7] Li Shu, Lan Ke, Lai Dong-Xian, Liu Jie. Monte Carlo simulation of the radiation transport of spherical holhraum. Acta Physica Sinica, doi: 10.7498/aps.64.145203
    [8] Li Gan, Cheng Mou-Sen, Li Xiao-Kang. Thermal-chemical coupling model of laser induced ablation on polyoxymethylene. Acta Physica Sinica, doi: 10.7498/aps.63.107901
    [9] Song Tian-Ming, Yang Jia-Min. One-dimensional simulation of radiation transport in three-dimensional cylinder. Acta Physica Sinica, doi: 10.7498/aps.62.015210
    [10] Liu Shen-Ye, Huang Yi-Xiang, Hu Xin, Zhang Ji-Yan, Yang Guo-Hong, Li Jun, Yi Rong-Qing, Du Hua-Bing, Ding Yong-Kun. Experimental research on X-ray radiation and ablation of an Ag foil targets irradiated by high intensity 2ω0 laser light beam. Acta Physica Sinica, doi: 10.7498/aps.62.035202
    [11] Chang Hao, Jin Xing, Chen Zhao-Yang. Numerical simulation of nanosecond laser ablation impulse coupling. Acta Physica Sinica, doi: 10.7498/aps.62.195203
    [12] Liu Xiao-Liang, Sun Shao-Hua, Cao Yu, Sun Ming-Ze, Liu Qing-Cao, Hu Bi-Tao. Experimental study on the behaviors of femtosecond-laser-induced low-pressure N2 plasma. Acta Physica Sinica, doi: 10.7498/aps.62.045201
    [13] Du Yin-Chang, Cao Jin-Xiang, Wang Jian, Zheng Zhe, Liu Yu, Meng Guang, Ren Ai-Min, Zhang Sheng-Jun. Mode transition of inductively coupled plasma in interlayer chamber. Acta Physica Sinica, doi: 10.7498/aps.61.195206
    [14] Li Gang, Deng Li, Mo Ze-Yao, Li Shu. Adaptive source biasing sampling for time-dependent radiation transport problems. Acta Physica Sinica, doi: 10.7498/aps.60.022401
    [15] Liu Shi-Bing, Liu Yuan-Xing, He Run, Chen Tao. Instantaneous characteristics of excited atom state 5s' 4D7/2 in the copper plasma induced by laser. Acta Physica Sinica, doi: 10.7498/aps.59.5382
    [16] Huang Qing-Ju. Radiation mechanism of pulsed laser ablation of metal Al. Acta Physica Sinica, doi: 10.7498/aps.57.2314
    [17] Zheng Xin-Liang, Li Guang-Shan, Zhong Shou-Xian, Tian Jin-Shou, Li Zhen-Hong, Ren Zhao-Yu. Ablating of carbon nanotube by laser beam and its effect on field emission performance. Acta Physica Sinica, doi: 10.7498/aps.57.7912
    [18] Lin Zhao-Xiang, Wu Jin-Quan, Gong Shun-Sheng. Spectroscopic study on the air plasma induced by delayed dual laser pulses. Acta Physica Sinica, doi: 10.7498/aps.55.5892
    [19] Zhang Shu-Dong, Li Hai-Yang. Formation and emission spectra of C2 swan band during the reaction of laser ablating target of aluminum with CF4 beam. Acta Physica Sinica, doi: 10.7498/aps.52.1297
    [20] JIANG SHAO-EN, ZHENG ZHI-JIAN, CHENG JIN-XIU, SUN KE-XU. PRELIMINARY INVESTIGATION ON X-RAY RADIATION TRANSPORT IN CYLINDRIEAL TARGETS Ⅰ SIMULATIONS AND ANALYSES ON THE SIMPLE MODEL. Acta Physica Sinica, doi: 10.7498/aps.49.1507
Metrics
  • Abstract views:  32
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  30 December 2025
  • /

    返回文章
    返回
    Baidu
    map