-
Magnetic proximity effects (MPE) are crucial for topological quantum devices because they enable control of boundary states between a ferromagnetic insulator and a topological insulator. The InAs/GaInSb double quantum well system—especially when combined with a superconductor and influenced by MPE—shows promise for producing topological qubits. Nonetheless, researchers still debate the exact strength of the MPE between europium sulfide (EuS) and InAs.
To directly probe the MPE, this work focuses on a EuS/InAs/GaInSb heterostructure. The heterostructure was fabricated by depositing EuS onto the passivated surface of a Hall bar formed from an InAs/GaInSb double quantum well, utilizing an electron beam evaporation system. Structural analysis using Reflection High-Energy Electron Diffraction and magnetic measurements revealed that, although the resulting EuS thin films were polycrystalline, they nonetheless displayed desired magnetic properties, making them suitable for further study of MPE phenomena.
Low-temperature magnetoresistance measurements on the fabricated Hall bar revealed several key phenomena that collectively provide evidence for the MPE. Application of a positive gate voltage caused the electron wavefunction within the InAs layer to shift toward the EuS interface, thereby enhancing the MPE. Under a perpendicular magnetic field, the magnetoresistance exhibited an increasing slope for the odd-parity component. Additionally, a transition from positive to negative magnetoresistance near zero field was observed. When an in-plane magnetic field was applied, a gate-enhanced negative magnetoresistance emerged. Hysteretic magnetoresistance, corresponding to the reversal of EuS magnetization, was also detected during these measurements.
The resistance-temperature curve for the heterostructure displayed a pronounced upturn at low temperatures. This behavior was well described by the Kondo model, indicating the presence of exchange coupling between InAs electrons and the localized magnetic moments of EuS near the interface. Such coupling is a strong indicator of the magnetic proximity effect at work in the system.
These findings collectively demonstrate the existence of a gate-tunable MPE in the EuS/InAs/GaInSb heterostructure. The ability to control the MPE through gate voltage establishes this heterostructure as a compelling platform for the exploration of proximity-induced magnetism. Furthermore, these results underscore the potential applications of such systems in the development of spin-based electronic devices and highlight their significance for future research in topological quantum computing.-
Keywords:
- ferromagnetic insulator/semiconductor heterostructure /
- topological insulator /
- magnetoresistance /
- spintronics
-
[1] Žutić I, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323
[2] Filip A T, LeClair P, Smits C J P, Kohlhepp J T, Swagten H J M, Koopmans B, de Jonge W J M 2002 Appl. Phys. Lett. 81 1815
[3] Gomez-Perez J M, Zhang X-P, Calavalle F, Ilyn M, González-Orellana C, Gobbi M, Rogero C, Chuvilin A, Golovach V N, Hueso L E, Bergeret F S, Casanova F 2020 Nano Lett. 20 6815
[4] Muduli P K, Leo N, Xu M, Zhu Z, Puebla J, Ortiz Pauyac C, Isshiki H, Otani Y 2025 J. Phys. D: Appl. Phys. 58 285003
[5] Lu J, Gan Y-L, Lei Y-L, Yan L, Ding H 2020 Chinese Phys. B 29 117503
[6] Qi X-L, Zhang S-C 2011 Rev. Mod. Phys. 83 1057
[7] Sau J D, Lutchyn R M, Tewari S, Das Sarma S 2010 Phys. Rev. Lett. 104 040502
[8] Alicea J 2012 Rep. Prog. Phys. 75 076501
[9] Du R-R 2023 Sci. China-Phys. Mech. Astron. 66 267006
[10] Wolf M J, Sürgers C, Fischer G, Scherer T, Beckmann D 2014 J. Magn. Magn. Mater. 368 49
[11] Yang Q I, Zhao J, Zhang L, Dolev M, Fried A D, Marshall A F, Risbud S H, Kapitulnik A 2014 Appl. Phys. Lett. 104 082402
[12] Hao X, Moodera J S, Meservey R 1990 Phys. Rev. B 42 8235
[13] Li B, Roschewsky N, Assaf B A, Eich M, Epstein-Martin M, Heiman D, Münzenberg M, Moodera J S 2013 Phys. Rev. Lett. 110 097001
[14] Jia L, Yu-Lin G, Lei Y, Hong D 2021 Acta Phys. Sin. 70 047401 (in Chinese) [芦佳, 甘渝林, 颜雷, 丁洪 2021 70 047401]
[15] Katmis F, Lauter V, Nogueira F S, Assaf B A, Jamer M E, Wei P, Satpati B, Freeland J W, Eremin I, Heiman D, Jarillo-Herrero P, Moodera J S 2016 Nature 533 513
[16] Liu Y, Vaitiekėnas S, Martí-Sánchez S, Koch C, Hart S, Cui Z, Kanne T, Khan S A, Tanta R, Upadhyay S, Cachaza M E, Marcus C M, Arbiol J, Moler K A, Krogstrup P 2019 Nano Lett. 20 456
[17] Vaitiekėnas S, Liu Y, Krogstrup P, Marcus C M 2020 Nat. Phys. 17 43
[18] Escribano S D, Maiani A, Leijnse M, Flensberg K, Oreg Y, Levy Yeyati A, Prada E, Seoane Souto R 2022 npj Quantum Mater. 7 81
[19] Escribano S D, Prada E, Oreg Y, Yeyati A L 2021 Phys. Rev. B 104 L041404
[20] Liu C-X, Schuwalow S, Liu Y, Vilkelis K, Manesco A L R, Krogstrup P, Wimmer M 2021 Phys. Rev. B 104 014516
[21] Yu M, Moayedpour S, Yang S, Dardzinski D, Wu C, Pribiag V S, Marom N 2021 Phys. Rev. Materials 5 064606
[22] Liu Y, Luchini A, Martí-Sánchez S, Koch C, Schuwalow S, Khan S A, Stankevič T, Francoual S, Mardegan J R L, Krieger J A, Strocov V N, Stahn J, Vaz C A F, Ramakrishnan M, Staub U, Lefmann K, Aeppli G, Arbiol J, Krogstrup P 2019 ACS Appl. Mater. Interfaces 12 8780
[23] Seong T-Y, Amano H 2020 Surf. Interfaces 21 100765
[24] van Wees B J, Meijer G I, Kuipers J J, Klapwijk T M, Graaf W v d, Borghs G 1995 Phys. Rev. B 51 7973
[25] Takiguchi K, Anh L D, Chiba T, Shiratani H, Fukuzawa R, Takahashi T, Tanaka M 2022 Nat. Commun. 13 6538
[26] Miller J B, Zumbühl D M, Marcus C M, Lyanda-Geller Y B, Goldhaber-Gordon D, Campman K, Gossard A C 2003 Phys. Rev. Lett. 90 076807
[27] Sazgari V, Sullivan G, Kaya İ İ 2020 Phys. Rev. B 101 155302
[28] Herling F, Morrison C, Knox C S, Zhang S, Newell O, Myronov M, Linfield E H, Marrows C H 2017 Phys. Rev. B 95 155307
[29] Koga T, Nitta J, Akazaki T, Takayanagi H 2002 Phys. Rev. Lett. 89 046801
[30] Zhi Z, Ruan H, Liu J, Li X, Zhang Y, Yao Q, Tang C, Xiao Y, Kou X 2025 Chinese Phys. Lett. 42 090708
[31] Kondo J 1964 Prog. Theor. Phys. 32 37
[32] Watson J D, Mondal S, Csáthy G A, Manfra M J, Hwang E H, Das Sarma S, Pfeiffer L N, West K W 2011 Phys. Rev. B 83 241305
[33] Hwang E H, Das Sarma S 2008 Phys. Rev. B 77 235437
[34] Hirakawa K, Sakaki H 1986 Phys. Rev. B 33 8291
[35] Jena D, Gossard A C, Mishra U K 2000 Appl. Phys. Lett. 76 1707
Metrics
- Abstract views: 24
- PDF Downloads: 2
- Cited By: 0









下载: