Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Instrumental Profile Modelling of a HighResolution Spectrograph based on Gaussian Process Regression

LI Buwei TANG Liang LU Yanting YE Huiqi HAN Jian ZHAI Yang CHEN Junyuan XIAO Dong

Citation:

Instrumental Profile Modelling of a HighResolution Spectrograph based on Gaussian Process Regression

LI Buwei, TANG Liang, LU Yanting, YE Huiqi, HAN Jian, ZHAI Yang, CHEN Junyuan, XIAO Dong
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Aims : High-resolution spectrographs are central to modern exoplanet research and are particularly effective for detecting Earth-like planets whose radial velocity (RV) signals can be only a few tens of centimeters per second. Achieving this level of precision requires highly accurate wavelength calibration. A key factor in this process is the modeling of the instrumental profile (IP), which describes the response of the spectrograph to incoming light. The true IP of a high-resolution instrument is often complex. It may show asymmetry or extended wings and change across the detector because of optical aberrations, variations in fiber illumination, and environmental effects. These features lead to systematic errors in the measured line centers when traditional parametric models such as Gaussian functions are used, and they limit the achievable RV precision.
    Methods: This work introduces a non-parametric IP modeling method based on Gaussian Process Regression (GPR). The IP is treated as a smooth function with a flexible covariance structure instead of being constrained by a predefined analytic form. GPR learns both the global structure and small-scale features of the line shape directly from the data. Since the IP varies slowly across the detector, the method divides each spectral order into several consecutive spatial segments. Each segment is fitted independently, capturing local variations. The model includes measurement uncertainties and provides a probabilistic description of the IP. Adjacent segments are linked with smooth interpolation to ensure a continuous IP across the entire order. Model performance is evaluated using reduced chi-squared and root mean square error (RMSE), allowing quantitative assessment and comparison with traditional approaches.
    Results: The method is tested with laser frequency comb (LFC) exposures from the fiber-fed High Resolution Spectrograph (HRS) on the 2.16 m telescope at Xinglong Observatory. The LFC produces a dense and highly stable set of emission lines and is well suited for validating IP reconstruction. Three experiments show clear and consistent improvements. Using odd-numbered lines to predict evennumbered ones within a single exposure reduces the RMSE by 35.6% compared with a Gaussian model, showing better determination of line centers. Applying an IP model trained on one exposure to a later exposure reduces the RMSE by 42.5%, demonstrating improved stability when the model is transferred between exposures. A comparison between two channels in the same exposure shows a 37.1% improvement in calibration consistency, indicating reduced channel-tochannel systematics.
    Conclusions: The results show that GPR provides a more accurate description of the instrumental profile and its spatial variation than traditional parametric models. The improved reconstruction of the IP leads to more accurate line center measurements and a more stable and precise wavelength solution. This capability is important for pushing the RV precision of high-resolution spectrographs toward the centimeter-per-second level. GPR offers a promising approach for modeling instrumental profiles and supports the precision required for detecting Earth-like exoplanets.
  • [1]

    Queloz D, Mayor M, Udry S, Burnet M, Carrier F, Eggenberger A, Naef D, Santos N, Pepe F, Rupprecht G, Avila G, Baeza S, Benz W, Bertaux J-L, Bouchy F, Cavadore C, Delabre B, Eckert W, Fischer J, Fleury M, Gilliotte A, Goyak D, Guzman J C, Kohler D, Lacroix D, Lizon J-L, Megevand D, Sivan J-P, Sosnowska D, Weilenmann U 2001 J Messenger 105 1

    [2]

    Pepe F, Cristiani S, Rebolo R, Santos N C, Dekker H, Mègevand D, Zerbi F M, Affolter M, Cabral A, Molaro P, Di Marcantonio P, Abreu M, Aliverti M, Allende Prieto C, Amate M, Avila G, Baldini V, Bristow P, Broeg C, Cirami R, Coelho J, Conconi P, Coretti I, Cupani G, D’Odorico V, De Caprio V, Delabre B, Dorn R, Figueira P, Fragoso A, Galeotta S, Genolet L, Gomes R, González Hernández J I, Hughes I, Iwert O, Kerber F, Landoni M, Lizon J-L, Lovis C, Maire C, Mannetta M, Martins C, Monteiro M A, Oliveira A, Porretti E, Rasilla J L, Riva M, Tschudi S S, Santos P, Sosnowska D, Sousa S, Spanò P, Tenegi F, Toso G, Vanzella E, Viel M, Zapatero Osorio M R 2013 J Messenger 153 6

    [3]

    Mayor M, Queloz D 1995 Nature 378 355

    [4]

    Mignon L, Delfosse X, Bonfils X, Meunier N, Astudillo-Defru N, Gaisne G, Forveille T, Bouchy F, Lo Curto G, Udry S, Segransan D, Unger N, Lovis C, Santos N C, Mayor M 2024 Astron. Astrophys. 689 A32

    [5]

    Passegger V M, Suárez Mascareño A, Allart R, González Hernández J I, Lovis C, Lavie B, Silva A M, Müller H M, Tabernero H M, Cristiani S, Pepe F, Rebolo R, Santos N C, Adibekyan V, Alibert Y, Allende Prieto C, Barros S C C, Bouchy F, Castro-González A, D’Odorico V, Dumusque X, Di Marcantonio P, Ehrenreich D, Figueira P, Génova Santos R, Lo Curto G, Martins C J A P, Mehner A, Micela G, Molaro P, Nari N, Nunes N J, Pallé E, Poretti E, Rodrigues J, Sousa S G, Sozzetti A, Udry S, Zapatero Osorio M R 2024 Astron. Astrophys. 684 A22

    [6]

    Mayor M, Lovis C, Santos N C 2014 Nature 513 328

    [7]

    Pepe F, Ehrenreich D, Meyer M R 2014 Nature 513 358

    [8]

    Milaković D, Jethwa P 2024 Astron. Astrophys. 684 A38

    [9]

    Hao Z B, Ye H Q, Tang L, Hao J, Han J, Zhai Y, Xiao D 2022 Acta Opt. Sin. 42 0112002(in Chinese) [郝志博, 叶慧琪, 唐靓, 郝俊, 韩建, 翟洋, 肖东 2022 光学学报 42 0112002]

    [10]

    Hirano T, Kuzuhara M, Kotani T, Omiya M, Kudo T, Harakawa H, Vievard S, Kurokawa T, Nishikawa J, Tamura M, Hodapp K, Ishizuka M, Jacobson S, Konishi M, Serizawa T, Ueda A, Gaidos E, Sato B 2020 Publ. Astron. Soc. Jpn. 72 93

    [11]

    Schmidt T M, Bouchy F 2024 Mon. Not. R. Astron. Soc. 530 1252

    [12]

    Valenti J A, Butler R P, Marcy G W 1995 Publ. Astron. Soc. Pac. 107 966

    [13]

    Chamarthi S, Banyal R K, Sriram S 2018 Proc. SPIE 10702 1070275

    [14]

    Bechter E B, Bechter A J, Crepp J R, Crass J 2021 J. Astron. Telesc. Instrum. Syst. 7 035008

    [15]

    Seifahrt A, Bean J L, Kasper D, Stürmer J, Brady M, Liu R, Zechmeister M, Stefánsson G K, Montet B, White J, Tapia E, Mocnik T, Xu S, Schwab C 2022 Proc. SPIE 12184 121841G

    [16]

    Udem T, Holzwarth R, Hänsch T W 2002 Nature 416 233-237

    [17]

    Murphy M T, Udem T, Holzwarth R, Sizmann A, Pasquini L, Araujo-Hauck C, Dekker H, D’Odorico S, Fischer M, Hänsch T W, Manescau A 2007 Mon. Not. R. Astron. Soc. 380 839

    [18]

    Zhao F, Curto G L, Pasquini L, Hernández J G, De Medeiros J, Martins B C, Leão I, Rebolo R, Mascareño A S, Esposito M 2021 Astron. Astrophys. 645 A23

    [19]

    Schmidt T M, Molaro P, Murphy M T, Lovis C, Cupani G, Cristiani S, Pepe F A, Rebolo R, Santos N C, Abreu M, Adibekyan V, Alibert Y, Aliverti M, Allart R, Allende Prieto C, Alves D, Baldini V, Broeg C, Cabral A, Calderone G, Cirami R, Coelho J, Coretti I, D’Odorico V, Di Marcantonio P, Ehrenreich D, Figueira P, Genoni M, Génova Santos R, González Hernández J I, Kerber F, Landoni M, Leão A C O, Lizon J-L, Lo Curto G, Manescau A, Martins C J A P, Mègevand D, Mecheri A, Micela G, Modigliani A, Monteiro M, Monteiro M J P F G, Mueller E, Nunes N J, Oggioni L, Oliveira A, Pariani G, Pasquini L, Redaelli E, Riva M, Santos P, Sosnowska D, Sousa S G, Sozzetti A, Suárez Mascareño A, Udry S, Zapatero Osorio M R, Zerbi F 2021 Astron. Astrophys. 646 A144

    [20]

    Schmidt T M 2024 Proc. SPIE 13100 131004P

    [21]

    Robertson J G 2013 Publ. Astron. Soc. Aust. 30 e048

    [22]

    Hao Z B, Ye H Q, Han J, Tang L, Zhai Y, Xiao D, Zhu Y T, Zhang K, Wang L, Zhao G, Zhao F, Wang H J, Zheng J, Liu Y J, Wang J Q, Wei R Y, Yan Q Q 2020 arXiv:2005.07864 [astro-ph.IM]

    [23]

    Cai Y, Xu Z, Ji K 2020 Solar Physics 295 31

    [24]

    Meech A, Aigrain S, Brogi M, Birkby J L 2022 Mon. Not. R. Astron. Soc. 512 2604

    [25]

    Aigrain S, Foreman-Mackey D 2023 Annu. Rev. Astron. Astrophys. 61 329

    [26]

    Steinmetz T, Wilken T, Araujo-Hauck C, Holzwarth R, Hänsch T W, Udem T 2009 Applied Physics B 96 251

    [27]

    Anderson J, King I R 2000 Publ. Astron. Soc. Pac. 112 1360

    [28]

    Fan Z, Wang H J, Jiang X J, Wu H, Li H B, Huang Y, Xu D W, Hu Z W, Zhu Y N, Wang J F, Komossa S, Zhang X M 2016 Publ. Astron. Soc. Pac. 128 1

    [29]

    Hao Z B, Ye H Q, Han J, Wu Y J, Zhai Y, Xiao D 2018 Publ. Astron. Soc. Pac. 130 125001

  • [1] LIU Fan, JIANG Yuancheng, GUO Hua. Review of high-resolution 2-dimensional diffusion magnetic resonance imaging techniques. Acta Physica Sinica, doi: 10.7498/aps.74.20250235
    [2] Zeng Xiang-Yu, Wang Wei, Liu Cheng, Shan Chang-Gong, Xie Yu, Hu Qi-Hou, Sun You-Wen, Polyakov Alexander Viktorovich. Detection of atmosphere CCl2F2 spatio-temporal variations by ground-based high resolution Fourier transform infrared spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.70.20210640
    [3] Zhong Zhi, Zhao Wan-Ting, Shan Ming-Guang, Liu Lei. Telecentric in-line-and-off-axis hybrid digital holographic high-resolution reconstruction method. Acta Physica Sinica, doi: 10.7498/aps.70.20210190
    [4] Yao Hui-Dong, Cui Bo, Ma Si-Qi, Yu Chao, Lu Rui-Feng. Enhancing high harmonic generation in bilayer MoS2 by interlayer atomic dislocation. Acta Physica Sinica, doi: 10.7498/aps.70.20210731
    [5] Zhang Qian, Wang Ya-Hui, Zhang Ming-Jiang, Zhang Jian-Zhong, Qiao Li-Jun, Wang Tao, Zhao Le. Distributed temperature measurement with millimeter-level high spatial resolution based on chaotic laser. Acta Physica Sinica, doi: 10.7498/aps.68.20190018
    [6] Lu Xing-Ji, Cao Zhen-Song, Tan Tu, Huang Yin-Bo, Gao Xiao-Ming, Rao Rui-Zhong. Instrument line shape function of laser heterodyne spectrometer. Acta Physica Sinica, doi: 10.7498/aps.68.20181620
    [7] Zhu Xue-Tao, Guo Jian-Dong. Development of novel high-resolution electron energy loss spectroscopy and related studies on surface excitations. Acta Physica Sinica, doi: 10.7498/aps.67.20180689
    [8] He Zu-Yuan, Liu Qing-Wen, Chen Jia-Geng. Ultrahigh resolution fiber optic strain sensing system for crustal deformation observation. Acta Physica Sinica, doi: 10.7498/aps.66.074208
    [9] Jiao Ya-Yin, Ran Ling-Kun, Li Na, Gao Shou-Ting, Zhou Guan-Bo. High resolution numerical simulation of typhoon Mujigae (2015) and analysis of vortex Rossby waves. Acta Physica Sinica, doi: 10.7498/aps.66.089201
    [10] Wei Yu-Tong, Liu Shang-Kuo, Yan Ting-Yu, Li Qi-Wei. Study on the methods of calibrating spectral line position of interference imaging spectrometer. Acta Physica Sinica, doi: 10.7498/aps.65.080601
    [11] Xu Xin-Ke, Liu Guo-Dong, Liu Bing-Guo, Chen Feng-Dong, Zhuang Zhi-Tao, Gan Yu. High-resolution laser frequency scanning interferometer based on fiber dispersion phase compensation. Acta Physica Sinica, doi: 10.7498/aps.64.219501
    [12] Tian Yuan, Sun You-Wen, Xie Pin-Hua, Liu Cheng, Liu Wen-Qing, Liu Jian-Guo, Li Ang, Hu Ren-Zhi, Wang Wei, Zeng Yi. Observation of ambient CH4 variations using ground-based high resolution Fourier transform solar spectrometry. Acta Physica Sinica, doi: 10.7498/aps.64.070704
    [13] Li Jin-Yang, Lu Dan-Feng, Qi Zhi-Mei. End-face reflected LiNbO3 waveguide based stationary miniature Fourier transform spectrometer with two-fold enhanced spectral resolution. Acta Physica Sinica, doi: 10.7498/aps.64.114207
    [14] Shi Guang, Zhang Fu-Min, Qu Xing-Hua, Meng Xiang-Song. Absolute distance measurement by high resolution frequency modulated continuous wave laser. Acta Physica Sinica, doi: 10.7498/aps.63.184209
    [15] Li Jun, Zhang You-Peng. Single-step and multiple-step prediction of chaotic time series using Gaussian process model. Acta Physica Sinica, doi: 10.7498/aps.60.070513
    [16] Sun Zeng-Guo, Han Chong-Zhao. Modeling high-resolution synthetic aperture radar images with heavy-tailed distributions. Acta Physica Sinica, doi: 10.7498/aps.59.998
    [17] Zhao Gui-Min, Lu Ming-Zhu, Wan Ming-Xi, Fang Li. Study of vibro-acoustography with high spatial resolution based on sector array transducers. Acta Physica Sinica, doi: 10.7498/aps.58.6596
    [18] Xiang Liang-Zhong, Xing Da, Guo Hua, Yang Si-Hua. High resolution fast digital photoacoustic CT for breast cancer diagnosis. Acta Physica Sinica, doi: 10.7498/aps.58.4610
    [19] WANG ZHEN-XIA, HU JUN, WANG WEN-MIN, YU GUO-QING, RUAN MEI-LING. A HIGH RESOLUTION ELECTRON MICROSCOPY INVESTIGATION OF CURVATURE IN MULTILAYER GRAPHITE SHEETS. Acta Physica Sinica, doi: 10.7498/aps.47.1853
    [20] ZHU DE-ZHANG, PAN HAO-CHANG, CAO JIAN-QING, ZHU FU-YING, CHEN GUO-MING, CHEN GUO-LIANG, YANG JIE, ZOU SHI-CHANG. STUDY ON LOW ENERGY ION BEAM NITRIDATION OF Si BY HIGH RESOLUTION CHANNELING-BACKSCATTERING. Acta Physica Sinica, doi: 10.7498/aps.39.96
Metrics
  • Abstract views:  9
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  12 December 2025
  • /

    返回文章
    返回
    Baidu
    map