-
Achieving a balance between low density, high strength, and good ductility remains a major challenge in the development of structural materials. Ti-based bulk metallic glasses (BMGs) have attracted considerable attention due to their exceptionally high specific strength; however, the intrinsic strength–plasticity trade-off has hindered their practical applications. Based on a quasicrystal-derived structural heredity and minor-element microalloying, this work realizes a synergistic enhancement of specific strength and plasticity in Ti-based BMGs. The resulting ((Ti40Zr40Ni20)72Be28)97Al3 BMGs exhibits an ultrahigh specific strength of 5.34 × 105 N·m·kg-1, setting a new record for Ti-based BMGs, together with a plastic strain of 13%, breaking the conventional strength–plasticity limitation of BMGs. Structural analyses reveal that Al microalloying effectively inherits and modulates the short-range order originating from the quasicrystalline structure, thereby achieving the observed synergistic enhancement in both strength and plasticity. This work provides new insights into composition design and lightweight structural applications of Ti-based BMGs.
-
Keywords:
- titanium-based BMGs /
- specific strength /
- plasticity /
- microalloying
-
[1] Li J, Yan Q, Chen B 2024 Mater. Dev. Appl. 39 1 (in Chinese) [李金山, 晏琪, 陈彪 2024 材料开发与应用 39 1]
[2] Wyatt B C, Nemani S K, Hilmas G E, Opila E J, Anasori B 2024 Nat. Rev. Mater. 9 773
[3] Yan Y-Q, Cha W-H, Liu S, Ma Y, Luan J-H, Rao Z, Liu C, Shan Z-W, Lu J, Wu G 2025 Science 387 401
[4] Inoue A 2000 Acta Materialia 48 279
[5] Inoue A, Takeuchi A 2004 Mater. Sci. Eng., A 375-377 16
[6] Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 45
[7] Peker A, Johnson W L 1993 Appl. Phys. Lett. 63 2342
[8] Inoue A, Zhang T 1996 Mater. Trans. 37 185
[9] Inoue A, Nishiyama N, Amiya K, Zhang T, Masumoto T 2007 Mater. Trans., JIM 30 131
[10] Bu H-T, Gu J-L, Su Y-S, Shao Y, Yao K-F 2025 Rare Met. 44 1932
[11] Qiao Q, Wang J, Cai Z Q, Feng S D, Song Z Q, Huo B K, Li Z J, Wang L-M 2023 Chin. Phys. B 32 116401
[12] Cai A, Tan J, Ding D, Wang H, Liu Y, Wu H, An Q, Ning H, Zhou G 2020 Mater. Chem. Phys. 251 123072
[13] Li Y H, Zhang W, Dong C, Qiang J B, Yubuta K, Makino A, Inoue A 2010 J. Alloys Compd. 504 S2
[14] Tan Y, Wang Y, Cheng X, Fu Q, Xin Z, Xu Z, Cheng H 2021 J. Non-Cryst. Solids 568 120962
[15] Long Z, Wei H, Ding Y, Zhang P, Xie G, Inoue A 2009 J. Alloys Compd. 475 207
[16] Zhang Z, Eckert J, Schultz L 2003 Acta Mater. 51 1167
[17] Zhai H, Xu Y, Zhang F, Ren Y, Wang H, Liu F 2017 J. Alloys Compd. 694 1
[18] Spaepen F 1977 Acta Metall. 25 407
[19] Argon A 1979 Acta Metall. 27 47
[20] Li C-Y, Yin J-F, Ding J-Q, Zhu F-P, Zhao Y-C, Kou S-Z 2018 Mater. Sci. Technol. 34 1887
[21] Gong P, Deng L, Jin J, Wang S, Wang X, Yao K 2016 Metals 6 264
[22] Inoue A, Takeuchi A 2005 Mater. Trans. 43 1892
[23] Wang L-M, Liu R-P, Tian Y-J 2020 Acta. Phys. Sin. 69 196401 (in Chinese) [王利民, 刘日平, 田永君 2020 69 196401]
[24] Sun B, Pan M, Zhao D, Wang W, Xi X, Sandor M, Wu Y 2008 Scr. Mater. 59 1159
[25] Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817
[26] Chen Y, Xiao Y, Lyu G-J, Wang B, Wang Y-J, Yang Y, Pineda E, Fusco C, Chazeau L, Qiao J-C 2025 Int. J. Eng. Sci. 217 104394
[27] Liang S, Zhu F, Wang Y-J, Pineda E, Wada T, Kato H, Qiao J-C 2024 Int. J. Eng. Sci. 205 104146
[28] Meng S-Y, Hao Q, Lyu G-J, Qiao J-C 2023 Acta. Phys. Sin. 72 076101 (in Chinese) [孟绍怡, 郝奇, 吕国建, 乔吉超 2023 72 076101]
[29] Wei X-Q, Bi J-Z, Li R 2017 Acta. Phys. Sin. 66 176408 (in Chinese) [魏新权, 毕甲紫, 李然 2017 66 176408]
Metrics
- Abstract views: 23
- PDF Downloads: 1
- Cited By: 0









下载: