Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Non-reciprocal propagation of optical vortices controlled by flying Rydberg spins

WANG Yixuan LIU Yimou WU Jinhui

Citation:

Non-reciprocal propagation of optical vortices controlled by flying Rydberg spins

WANG Yixuan, LIU Yimou, WU Jinhui
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • This paper investigates the dynamic control of non-reciprocal propagation for vortex beams in a Rydberg atomic ensemble mediated by flying spin atomic clusters. The system comprises a target Rydberg atomic ensemble with a five-level N-type structure and two flying spin atomic clusters moving at velocity v, coupled via position-dependent non-resonant dipole-exchange interactions to form a hybrid quantum system exhibiting dipole-exchange-induced transparency. The macroscopic relative motion between the flying spin clusters and the stationary target ensemble induces optical non-reciprocity. Utilizing the split-step Fourier propagation method combined with the superatom model, we perform numerical simulations to analyze the spatial evolution of a probe Laguerre-Gaussian (LG) vortex beam. To quantify nonreciprocity, we introduce the LG nonreciprocity index CLG, defined via the normalized mean absolute intensity difference between output spots for left and right incidence. Our findings show that the spin cluster velocity v and the probe detuning (∆p) are key parameters governing the non-reciprocal response. By tuning v and ∆p, we can flexibly manipulate both the intensity and phase profile of the transmitted two-dimensional vortex wavefront. In the presence of dipole-exchange interaction, the output spot undergoes marked stretching deformation, departing from an ideal annular shape, and its stretching direction (e.g., along x or y) can be precisely switched via parameter adjustment. Moreover, the input direction of the probe beam influences the output phase pattern, producing counterclockwise phase rotation for left incidence and clockwise rotation for right incidence. This work reveals a dynamic control mechanism for non-reciprocal propagation of structured light via macroscopic motion of spin clusters and underscores the potential of dipole-exchange-induced transparent systems for designing nonreciprocal optical devices. The results provide a theoretical foundation for optical information processing and quantum communication, and suggest a viable technique for two-dimensional vortex beam shaping with broad application prospects.
  • [1]

    Potton R J 2004 Rep. Prog. Phys. 67 717

    [2]

    Krasnok A, Alù A 2022 ACS Photonics 9 2

    [3]

    Tripathi A, Ugwu C F, Asadchy V S, Faniayeu I, Kravchenko I, Fan S, Kivshar Y, Valentine J, Kruk S S 2024 Nat. Commun. 15 5077

    [4]

    Li R, Xue J, Song D, Li X, Wang D, Yang B, Zhou H 2025 Acta Phys. Sin. 74 044203 (in Chinese) [李若楠, 薛晶晶, 宋丹, 李鑫, 王丹, 杨保东, 周海涛 2025 74 044203]

    [5]

    Zhao X, Wu K, Chen C, Bifano T G, Anderson S W, Zhang X 2020 Adv. Sci. 7 2001443

    [6]

    Pan R K, Tang L, Xia K 2024 Phys. Rev. A 110 043505

    [7]

    Li B, Huang R, Xu X, Miranowicz A, Jing H 2019 Photon. Res. 7 630

    [8]

    Ren Y l, Ma S l, Xie J k, Li X k, Cao M t, Li F l 2022 Phys. Rev. A 105 013711

    [9]

    You Y, Jia Z, Chen B, Peng Y 2023 Phys. Rev. A 107 053710

    [10]

    Sedov E, Glazov M, Kavokin A 2022 Phys. Rev. Appl. 17 024037

    [11]

    Jing Z, Ma C, Li P, Yu P, Neogi A, Wang Z 2024 Appl. Phys. Lett. 124 171701

    [12]

    Hafezi M, Rabl P 2012 Opt. Express 20 7672

    [13]

    Zhou Y, Ruesink F, Gertler S, et al 2024 Phys. Rev. X 14 021002

    [14]

    Li Z H, Zheng L L, Zhu G L, Wu Y, Lu X Y 2024 Phys. Rev. A 110 013515

    [15]

    You Y, Hu Y, Lin G, Qi Y, Niu Y, Gong S 2021 Phys. Rev. A 103 063706

    [16]

    Shen Z, Zhang Y L, Chen Y, Xiao Y F, Zou C L, Guo G C, Dong C H 2023 Phys. Rev. Lett. 130 013601

    [17]

    Otterstrom N T, Kittlaus E A, Gertler S, Behuning R O, Lentine A L, Rakich P P 2019 Optica 6 1117

    [18]

    Zhang W, Hou R, Wang T, Liu S, Zhang S, Wang H F 2024 Phys. Rev. A 110 023723

    [19]

    Ullah M, Mikki S 2024 Phys. Rev. B 109 214303

    [20]

    Dong F A, Zhang W Q, Atakaramian S, Afshar V S 2023 Opt. Laser Technol. 160 109060

    [21]

    Fan S, Qi Y, Niu Y, Gong S 2022 Chin. Opt. Lett. 20 012701

    [22]

    Zheng J C, Zheng X W, He X L, Qiao Y F, Yao X Y, Pan X F, Ren Y M, Huo X W, Li P B 2025 Quantum Sci. Technol. 10 035005

    [23]

    Xiang Y, Zuo Y, Xu X W, Huang R, Jing H 2023 Phys. Rev. A 108 043702

    [24]

    Wang H, Fan F, Li P, Xue Q, Tan Z, Zhao D, Zhao H, Yang Q, Wen Q, Chang S 2025 Laser Photonics Rev. 19 2500375

    [25]

    Peng W, Wang B 2025 Appl. Phys. Lett. 126 253907

    [26]

    Kang T, Zhang T, Zhang F, Pu M, Chen L, Bao H, Chen S, Du A, Long L, Guo Y, Xu M, Luo X 2025 Adv. Funct. Mater. 35 2504593

    [27]

    Shi H, Xiong Z, Chen W, Xu J, Wang S, Chen Y 2019 Opt. Express 27 28114

    [28]

    Lu T X, Li Z S, Chen L S, Wang Y, Xiao X, Jing H 2025 Phys. Rev. A 111 013713

    [29]

    Wu J H, Artoni M, La Rocca G C 2014 Phys. Rev. Lett. 113 123004

    [30]

    Wu J H, Artoni M, La Rocca G C 2015 Phys. Rev. A 91 033811

    [31]

    Wu J H, Artoni M, La Rocca G C 2017 Phys. Rev. A 95 053862

    [32]

    Chang Z G, Niu Y P, Zhang J T, Gong S Q 2012 Chin. Phys. B 21 114210

    [33]

    Zhang X J, La Rocca G C, Artoni M, Wang H H, Wu J H 2021 Phys. Rev. A 103 062205

    [34]

    Zhao H M, Zheng D D, Zhang X J, Wu J H 2024 New J. Phys. 26 043018

    [35]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [36]

    Yang L, Zhang L, Li X, Li X, Guo Q, Han L, Fu G 2006 Acta Phys. Sin. 55 5206 (in Chinese) [杨丽 君, 张连水, 李晓莉, 李晓著, 郭庆林, 韩理, 傅广生 2006 55 5206]

    [37]

    Horsley S A R, Wu J H, Artoni M, La Rocca G C 2013 Phys. Rev. Lett. 110 223602

    [38]

    Lin G, Zhang S, Hu Y, Niu Y, Gong J, Gong S 2019 Phys. Rev. Lett. 123 033902

    [39]

    Liu L, Niu Y, Gong S 2025 Appl. Phys. Lett. 126 241101

    [40]

    Zhang S, Hu Y, Lin G, Niu Y, Xia K, Gong J, Gong S 2018 Nat. Photonics 12 744

    [41]

    Li J F, Wang Y F, Huang P S, Su K Y, Peng Y Q, Zhang S, Yan H, Zhu S L 2023 Phys. Rev. Appl. 20 014027

    [42]

    Cai J, Jiao Y, Hao L, Xue Y, Zhao J, Jia S 2018 Acta Phys. Sin. 67 093201 (in Chinese) [蔡佳蓓, 焦 月春, 郝丽萍, 薛咏梅, 赵建明, 贾锁堂 2018 67 093201]

    [43]

    Sinclair J, Angulo D, Lupu-Gladstein N, Bonsma-Fisher K, Steinberg A M 2019 Phys. Rev. Res. 1 033193

    [44]

    An Z Y, Lu B W, Li J, Yang C W, Li L, Bao X H, Pan J W 2025 Phys. Rev. Lett. 134 230803

    [45]

    Li D, Xu B, Qin K, Jia X, Zhao C, Zhou Y, Xu Z 2025 Photonics 12 204

    [46]

    Zheng D D, Zhao H M, Zhang X J, Wu J H 2022 Phys. Rev. A 106 043119

    [47]

    Zheng D D, Zhang Y, Liu Y M, Zhang X J, Wu J H 2023 Phys. Rev. A 107 013704

    [48]

    Petrosyan D 2017 New J. Phys. 19 033001

    [49]

    Bao X Q, Tian X D, Li D X, Liu Y M 2024 Opt. Express 32 25661

    [50]

    Dutton Z, Ruostekoski J 2004 Phys. Rev. Lett. 93 193602

    [51]

    Ruseckas J, Juzeliūnas G, Öhberg P, Barnett S M 2007 Phys. Rev. A 76 053822

    [52]

    Chen Q F, Shi B S, Zhang Y S, Guo G C 2008 Phys. Rev. A 78 053810

    [53]

    Ding Q, Pan J 2011 Acta Phys. Sin. 60 094204 (in Chinese) [丁琴峰, 潘继雄 2011 60 094204]

    [54]

    Hamedi H R, Ruseckas J, Juzeliūnas G 2018 Phys. Rev. A 98 013840

    [55]

    Hamedi H R, Ruseckas J, Paspalakis E, Juzeliūnas G 2019 Phys. Rev. A 99 033812

    [56]

    Hamedi H R, Paspalakis E, Žlabys G, Juzeliūnas G, Ruseckas J 2019 Phys. Rev. A 100 023811

    [57]

    Mahmoudi M, Sabegh Z A, Mohammadi M, Mahmoudi M, Hamedi H R 2020 Phys. Rev. A 101 063811

    [58]

    Wang Z, Zhang Y, Paspalakis E, Yu B 2020 Phys. Rev. A 102 063509

    [59]

    Asadpour S H, Paspalakis E, Hamedi H R 2021 Phys. Rev. A 103 063705

    [60]

    Meng C, Shui T, Yang W X 2023 Phys. Rev. A 107 053712

    [61]

    Babiker M, Power W, Allen L 1994 Phys. Rev. Lett. 73 1239

    [62]

    Lembessis V E, Babiker M 2010 Phys. Rev. A 82 051402

    [63]

    Moretti D, Felinto D, Tabosa J 2009 Phys. Rev. A 79 023825

    [64]

    Veissier L, Nicolas A, Giner L, Maxein D, Sheremet A S, Giacobino E, Laurat J 2013 Opt. Lett. 38 712

    [65]

    Radwell N, Clark T, Piccirillo B, Barnett S, Franke-Arnold S 2015 Phys. Rev. Lett. 114 123603

    [66]

    Sharma S, Dey T N 2017 Phys. Rev. A 96 033811

    [67]

    Hamedi H R, Kudriašov V, Ruseckas J, Juzeliūnas G 2018 Opt. Express 26 28249

    [68]

    Abdurazakov O, Li C, Shim Y P 2023 Phys. Rev. B 108 125435

    [69]

    Das B K, Granados C, Krüger M, Chiappina M F 2024 Phys. Rev. Res. 6 043244

    [70]

    Abadi M G G, Mahmoudi M 2022 Sci. Rep. 12 5972

    [71]

    Cronin-Golomb M 2025 Photonics 12 113

    [72]

    Chen D, Jiang D, Xiao Z 2025 Photonics 12 566

    [73]

    Petrosyan D, Otterbach J, Fleischhauer M 2011 Phys. Rev. Lett. 107 213601

    [74]

    Gallagher T F, Pillet P 2008 In Adv. At. Mol. Opt. Phys., vol. 56 (Elsevier Inc.), pp 161–216

    [75]

    Yan D, Cui C L, Liu Y M, Song L J, Wu J H 2013 Phys. Rev. A 87 023827

    [76]

    Liu Y M, Yan D, Tian X D, Cui C L, Wu J H 2014 Phys. Rev. A 89 033839

    [77]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185

    [78]

    Mao L W, Ding D S, Rosales-Guzmán C, Zhu Z H 2022 J. Opt. 24 044004

    [79]

    Robertson E, Šibalić N, Potvliege R M, Adams C S, Weatherill K J 2021 Comput. Phys. Commun. 261 107814

  • [1] WANG Yan, LI Jiajian, AI Baoquan. Asymmetric gear driven by Brownian particles with non-reciprocal interactions. Acta Physica Sinica, doi: 10.7498/aps.75.20251168
    [2] ZHANG Huiling, XIE Zhongzhu, HAO Jiarui, FANG Yong. Experimental research on optical nonreciprocal control of cesium atomic systems at room temperature. Acta Physica Sinica, doi: 10.7498/aps.74.20241463
    [3] LI Ruonan, XUE Jingjing, SONG Dan, LI Xin, WANG Dan, YANG Baodong, ZHOU Haitao. Transfer of optical orbital angular momentum under nonreciprocity-reciprocity amplification conversion. Acta Physica Sinica, doi: 10.7498/aps.74.20241565
    [4] Ge Yun-Ran, Zheng Kang, Ding Chun-Ling, Hao Xiang-Ying, Jin Rui-Bo. Efficient optical nonreciprocity based on four-wave mixing effect in semiconductor quantum well. Acta Physica Sinica, doi: 10.7498/aps.73.20231212
    [5] Pei Si-Hui, Song Zi-Xuan, Lin Xing, Fang Wei. Interaction between light and single quantum-emitter in open Fabry-Perot microcavity. Acta Physica Sinica, doi: 10.7498/aps.71.20211970
    [6] Li Xin, Xie Shu-Yun, Li Lin-Fan, Zhou Hai-Tao, Wang Dan, Yang Bao-Dong. All-optical manipulation of two-way multi-channel based on optical nonreciprocity. Acta Physica Sinica, doi: 10.7498/aps.71.20220506
    [7] Jin Zhao, Li Rui, Gong Wei-Jiang, Qi Yang, Zhang Shou, Su Shi-Lei. Implementation of the Rydberg double anti-blockade regime and the quantum logic gate based on resonant dipole-dipole interactions. Acta Physica Sinica, doi: 10.7498/aps.70.20210059
    [8] Zhang Zheng-Yuan, Zhang Tian-Yi, Liu Zong-Kai, Ding Dong-Sheng, Shi Bao-Sen. Research progress of Rydberg many-body interaction. Acta Physica Sinica, doi: 10.7498/aps.69.20200649
    [9] Zhang Li-Wei, Li Xian-Li, Yang Liu. Optical nonreciprocity with blue-detuned driving in two-cavity optomechanics. Acta Physica Sinica, doi: 10.7498/aps.68.20190205
    [10] Zhang Shu-He, Shao Meng, Zhou Jin-Hua. Structured beam designed by ray-optical Poincaré sphere method and its propagation properties. Acta Physica Sinica, doi: 10.7498/aps.67.20180918
    [11] Li Hong-Yun, Yin Yan-Yan, Wang Qing, Wang Li-Fei. self-similarity of Rydberg hydrogen atom in parallel electric and magnetic fields. Acta Physica Sinica, doi: 10.7498/aps.64.180502
    [12] Fang Mao-Fa, Pan Chang-Ning, Zhao Xue-Hui, Yang Di-Wu. Dipole squeezing of atomic systems in dissipative environment. Acta Physica Sinica, doi: 10.7498/aps.59.6814
    [13] Cao Long-Gui, Lu Da-Quan, Hu Wei, Yang Ping-Bao, Zhu Ye-Qing, Guo Qi. Interaction between spacial optical solitons in sub-strongly non-local nonlinear media. Acta Physica Sinica, doi: 10.7498/aps.57.6365
    [14] Huang Chun-Fu, Guo Ru, Liu Si-Min. Mutual interactions of multiple partially incoherent spatial solitons. Acta Physica Sinica, doi: 10.7498/aps.56.908
    [15] Wang Ju-Xia, Yang Zhi-Yong, An Yu-Ying. The entanglement states transfer and preservation in the process of two-level atoms interacting with multi-mode light fields. Acta Physica Sinica, doi: 10.7498/aps.56.6420
    [16] Lin Ji-Cheng, Zheng Xiao-Hu, Cao Zhuo-Liang. Dipole squeezing in the system of the two-mode entangled coherent field interacting with atoms in Bell states in Kerr medium. Acta Physica Sinica, doi: 10.7498/aps.56.837
    [17] Huang Chun-Jia, He Hui-Yong, Li Jiang-Fan, Zhou Ming. . Acta Physica Sinica, doi: 10.7498/aps.51.1049
    [18] CHEN GANG-JIN, XIA ZHONG-FU, ZHANG YE-WEN. THE INTERACTION CHARACTERISTICS BETWEEN SPACE CHARGE AND DIPOLE IN THE HOST-GUEST NLO POLYMER ELECTRET DR1/PMMA FILMS. Acta Physica Sinica, doi: 10.7498/aps.48.1066
    [19] FENG JIAN, SONG TONG-QIANG, WANG WEN-ZHENG, XU JING-ZHI. EMISSION SPECTRA OF TWO ATOMS COUPLED BY DIPOLE-DIPOLE FORCE IN TWO-MODE CAVITY FIELDS. Acta Physica Sinica, doi: 10.7498/aps.43.1966
    [20] ZHANG SEN, QIU JI-ZHEN, WANG GANG. LEVEL STRUCTURE OF THE RYDBERG STATES OF CALCIUM ATOM IN ELECTRIC FIELD. Acta Physica Sinica, doi: 10.7498/aps.38.481
Metrics
  • Abstract views:  11
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  12 December 2025
  • /

    返回文章
    返回
    Baidu
    map