-
With the rise and wide applications of 3D heterogeneous integration technology, inductive voltage regulators have become increasingly important for mobile terminals and high-computing-power devices, while also offering significant development opportunities for high-frequency soft magnetic films. Based on the requirements of onchip power inductors, we first review the advantages and limitations of three types of magnetic core films: permalloy, ·Co-based amorphous metallic films, and FeCo-based nanogranular composite films, with a focus on the technical requirements and challenges posed by several μm-thick laminated magnetic core films. Secondly, almost all on-chip inductors are hard-axis excited, meaning that the field of inductors should be parallel to the hard axis of the magnetic core. We thus compare the characteristics of two types of large-area film fabrication methods, i.e. applying in-situ magnetic field and oblique sputtering, both of which can effectively induce in-plane uniaxially magnetic anisotropy (IPUMA). Their impacts on the static and high-frequency soft magnetic properties are also compared. The influence of film patterning on the domain structures and highfrequency magnetic losses of magnetic cores, as well as corresponding countermeasures, are also briefly analyzed. Furthermore, the temperature stability of magnetic permeability and anisotropy of magnetic core films is discussed from the perspectives of process compatibility and long-term reliability. Although the Curie temperature and crystallization temperature of the three types of magnetic core films are relatively high, the upper limits of their actual process temperatures are affected by the thermal effects on the alignment of magnetic atomic pairs, microstructural defects, and grain size. Finally, the current bottlenecks in testing high-frequency and large-signal magnetic losses of magnetic core films are addressed, and potential technical approaches for achieving magnetic core films that meet the future demands of on-chip power inductors for higher saturation current and lower magnetic losses are outlined.
-
Keywords:
- integrated voltage regulator /
- on-chip inductor /
- soft magnetic film /
- high frequency magnetic loss
-
[1] Burton E A, Schrom G, Paillet F, Douglas J, Lambert W J, Radhakrishnan K, Hill M J 2014 Proceedings of the 2014 IEEE Applied Power Electronics Conference and Exposition-APEC 2014 Fort Worth, TX, USA, 2014 p432-439.
[2] Sankarasubramanian M, Radhakrishnan K, Min Y, Lambert W, Hill M J, Dani A, Mesch R, Wojewoda L, Chavarria J, Augustine A 2020 Proceedings of the 2020 IEEE 70th Electronic Components and Technology Conference (ECTC) Orlando, FL, USA, 2020 p399-404.
[3] Bharath K, Radhakrishnan K, Hill M J, Chatterjee P, Hariri H, Venkataraman S, Do H T, Wojewoda L, Srinivasan S 2021 Proceedings of the 2021 IEEE 71st Electronic Components and Technology Conference (ECTC) San Diego, CA, USA, 2021 p1286-1292.
[4] Dennard R H, Gaensslen F H, Yu H N, Rideout V L, Bassous E, Leblanc A R 1999 Proc. IEEE 87 668.
[5] Kim W, Gupta M S, Wei G Y, Brooks D 2008 Proceedings of the 2008 IEEE 14th International Symposium on High Performance Computer Architecture Salt Lake City, UT, USA, 2008 p123-134.
[6] Gunawardane K, Kularatna N 2018 IET Power Electron. 11 229.
[7] Chyan T Y, Ramiah H, Hatta S F W M, Lai N S, Lim C C, Chen Y, Mak P I, Martins R P 2022 IEEE Access 10 114469.
[8] De Souza A F, Tofoli F L, Ribeiro E R 2021 Energies 14 2231.
[9] Barzegarkhoo R, Forouzesh M, Lee S S, Blaabjerg F, Siwakoti Y P 2022 IEEE Trans. Power Electron. 37 11209.
[10] Peng H, Wang J, Liu Z, Gao J, Wang X, Li J, He Y, Wei J, Xie Y 2024 Proceedings of the 2024 IEEE 10th International Power Electronics and Motion Control Conference (IPEMC2024-ECCE Asia) Chengdu, China, 2024 p1629-1633.
[11] Bellaredj M L F, Davis A K, Kohl P, Swaminathan M 2019 IEEE J. Emerg. Sel. Top. Power Electron. 8 2682.
[12] Schaef C, Salus T, Rayess R, Kulasekaran S, Manusharow M, Radhakrishnan K, Douglas J 2022 Proceedings of the 2022 IEEE International Solid-State Circuits Conference (ISSCC) San Francisco, CA, USA, 2022 p1-3.
[13] Choi B, Baek J, Marin B C, Qu S, Kulasekaran S, Chavarria J I, Wojewoda L E, Radhakrishnan K 2024 Proceedings of the 2024 IEEE 74th Electronic Components and Technology Conference (ECTC) Denver, CO, USA, 2024 p1044-1047.
[14] Wang N G, Doris B B, Shehata A B, O'sullivan E J, Brown S L, Rossnagel S, Ott J, Gignac L, Massouras M, Romankiw L T 2016 Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM) San Francisco, CA, USA, 2016 p35.33. 31-35.33. 34.
[15] Lambert W J, Hill M J, O'brien K P, Radhakrishnan K, Fischer P 2019 IEEE Trans. Power Electron. 35 6208.
[16] He Y H, Zhang Z P, Wu R X, Guo W, Zhang H W, Bai F M 2020 Solid-State Electron. 164 107699.
[17] He Y H, Wu R X, Zhong Z Y, Zhang H W, Bai F M 2021 IEEE Trans. Electron Devices 68 6292.
[18] Herget P, Wang N, O'sullivan E J, Webb B C, Romankiw L T, Fontana R, Decad G, Gallagher W J 2013 IEEE Trans. Magn. 49 4137.
[19] Gardner D S, Schrom G, Hazucha P, Paillet F, Karnik T, Borkar S, Saulters J, Owens J, Wetzel J 2006 Proceedings of the 2006 International Electron Devices Meeting San Francisco, CA, USA, 2006 p1-4.
[20] Gardner D S, Schrom G, Hazucha P, Paillet F, Karnik T, Borkar S, Hallstein R, Dambrauskas T, Hill C, Linde C 2008 J. Appl. Phys. 103 07E927.
[21] Takamura Y, Nitta H, Kawahara K, Kaneko T, Ishido R, Miyazaki T, Hosoda N, Fujisaki K, Nakagawa S 2023 IEEE Trans. Magn. 59 2801204.
[22] Sturcken N, Davies R, Wu H, Lekas M, Shepard K, Cheng K, Chen C, Su Y, Tsai C, Wu K 2015 Proceedings of the 2015 IEEE International Electron Devices Meeting (IEDM) Washington, DC, USA, 2015 p11.4. 1-11.4. 4.
[23] Wu H, Lekas M, Davies R, Shepard K L, Sturcken N 2016 IEEE Trans. Magn. 52 8401204.
[24] Li H W, Zhu K Y, Lei K B, Xu T T, Wu H X 2022 IEEE Trans. Power Electron. 37 10075.
[25] Silveyra J M, Ferrara E, Huber D L, Monson T C 2018 Science 362 eaao0195.
[26] Li Q, Liu X, Wang H, Lan Z, Zhang K, Wu C, Liu P, Jiang X, Sun K, Yu Z 2025 Ceram. Int. 51 20813.
[27] Islam R A, Jiang J, Bai F, Viehland D, Priya S 2007 Appl. Phys. Lett. 91 162905.
[28] Ying Y, Chen G, Li Z C, Zheng J W, Yu J, Qiao L, Li W C, Li J, Wakiya N, Yamaguchi M, Che S L 2025 J. Am. Ceram. Soc. 108 e20137.
[29] Http://Www.Hitachi-Metals.Co.Jp/E/Products/Elec/Tel/P02_21.Html.
[30] Shen W, Wang F, Boroyevich D S, Tipton C W 2008 IEEE Trans. Power Electron. 23 475.
[31] Snoek J L 1948 Physica 14 207.
[32] Acher O, Adenot A L 2000 Phys. Rev. B 62 11324.
[33] Deng L J, Zhou P H 2009 J. Univ. Electron. Sci. Technol. China 38 531 (in Chinese) [邓龙江,周佩珩 2009 电子科技大学学报 38 531].
[34] Xue D S, Li F S, Fan X L, Wen F S 2008 Chin. Phys. Lett. 25 4120.
[35] He Y H, Wang Y C, Zhong Z Y, Zhang H W, Bai F M 2018 IEEE Trans. Magn. 54 2800905.
[36] Kim S G, Yun E J, Kim J Y, Kim J, Cho K 2001 J. Appl. Phys. 90 3533.
[37] Anthony R, Hegarty M, O'brien J, Rohan J F, Mathúna C Ó 2016 IEEE Magn. Lett. 8 5103304.
[38] Jordan D, Wei G, Ye L, Lordan D, Podder P, Masood A, Rodgers K, Mathúna C Ó, Mccloskey P 2020 IEEE J. Emerg. Sel. Top. Power Electron. 9 102.
[39] Deng S G, Bhatnagar S, He S, Ahmad N, Rahaman A, Gao J R, Narang J, Khalifa I, Nag A 2022 Nanomaterials 12 3284.
[40] Cheng C, Davies R, Sturcken N, Shepard K, Bailey W E 2013 J. Appl. Phys. 113 17A343.
[41] Xu X L, Feng G N, Peng W L, Teng J, Han G, Guo R S, Xiong X D, He X, Luo J F, Feng C 2020 AIP Adv. 10 065109.
[42] Jordan D, Wei G, Masood A, O'mathuna C, Mccloskey P 2020 J. Appl. Phys. 128 093902.
[43] Wu Y Z, Yeng I, Yu H B 2021 AIP Adv. 11 025139.
[44] Li C Z, Jiang C J, Chai G Z 2021 Chin. Phys. B 30 037502.
[45] Zhang W H, Zhou G Y, Gao Q, Jia W, Chen X M, Huang B X, Feng L, He W, Wang C, Zhu Y K 2022 IEEE Trans. Electron Devices 69 5116.
[46] Sturcken N, Sullivan E J O, Wang N, Herget P, Webb B C, Romankiw L T, Petracca M, Davies R, Fontana R E, Decad G M, Kymissis I, Peterchev A V, Carloni L P, Gallagher W J, Shepard K L 2013 IEEE J. Solid-State Circuit 48 244.
[47] Osaka T, Takai M, Hayashi K, Ohashi K, Saito M, Yamada K 1998 Nature 392 796.
[48] Osaka T 2000 Electrochim. Acta 45 3311.
[49] Kim Y M, Choi D, Han S H, Kim H J 2001 Proceedings of the 6th Korean-Polish Joint Seminar on Physical Properties of Magnetic Materials Bedlewo, Poland, Jun 12-15, 2001 p12-16.
[50] Kim Y M, Choi D, Kim S R, Kim K H, Kim J, Han S H, Kim H J 2001 J. Magn. Magn. Mater. 226 1507.
[51] Gardner D S, Schrom G, Paillet F, Jamieson B, Karnik T, Borkar S 2009 IEEE Trans. Magn. 45 4760.
[52] Davies R P, Cheng C, Sturcken N, Bailey W E, Shepard K L 2013 IEEE Trans. Magn. 49 4009.
[53] Xu X L, Feng G N, Liu J T, Zhu R G, Yang X Y, Liu M C, Xiong X D, He X, Luo J F, Feng C, Yu G H 2020 J. Appl. Phys. 128 165303.
[54] Wang Y C, Wang L, Zhang H W, Zhong Z Y, Peng D L, Ye F, Bai F M 2016 J. Alloy. Compd. 667 229.
[55] Wang Y C, Zhang H W, Wang L, Zhong Z Y, Bai F M 2014 IEEE Trans. Magn. 50 2007504.
[56] Wang Y C, Zhang H W, Wang L, Bai F M 2014 J. Appl. Phys. 115 17A306.
[57] Grimaldi C 2014 Phys. Rev. B 89 214201.
[58] Kuo Y M, Lee C C, Duh J G 2010 Appl. Surf. Sci. 256 6437.
[59] Lu G D, Zhang H W, Xiao J Q, Bai F M, Tang X L, Li Y X, Zhong Z Y 2011 J. Appl. Phys. 109 07A327.
[60] Gao Y, Lu J, Han G 2015 Physica B 458 40.
[61] Zheng F, Han Z, Li S, Ma Z, Gao H 2022 Appl. Phys. A-Mater. Sci. Process. 128 253.
[62] Lu G, Huang X, Piao H, Pan L 2016 J. Alloy. Compd. 668 107.
[63] Ohnuma S, Ohnuma M, Fujimori H, Masumoto T 2007 J. Magn. Magn. Mater. 310 2503.
[64] Liu Y, Tan C Y, Liu Z W, Ong C K 2007 Appl. Phys. Lett. 90 112506.
[65] Kobayashi N, Masumoto H, Takahashi S, Maekawa S 2014 Nat. Commun. 5 4417.
[66] Cao Y, Kobayashi N, Ohnuma S, Masumoto H 2021 Appl. Phys. Lett. 118 032901.
[67] Lu G D, Zhang H W, Xiao J Q, Tang X L, Xie Y S, Zhong Z Y 2011 J. Appl. Phys. 109 07A308.
[68] Chai G Z, Phuoc N N, Ong C K 2013 Appl. Phys. Lett. 103 042412.
[69] Zhang B M, Wang G W, Zhang F, Xiao Y H, Ge S H 2009 Appl. Phys. A 97 657.
[70] Yang F F, Yan S S, Yu M X, Kang S S, Dai Y Y, Chen Y X, Pan S B, Zhang J L, Bai H L, Zhu D P 2013 J. Alloy. Compd. 558 91.
[71] Pan L L, Wang F L, Wang W F, Chai G Z, Xue D S 2016 Sci Rep 6 21327.
[72] Park S J, Liu C-H, Kim H S, Park N J, Jin S, Han J H 2015 Thin Solid Films 594 178.
[73] Lin P C, Cheng C Y, Yeh J W, Chin T S 2016 Entropy 18 308.
[74] Yu J, Arasu M A, Wickramanayaka S 2016 Proceedings of the 2016 IEEE 18th Electronics Packaging Technology Conference (EPTC) Singapore, 2016 p658-661.
[75] Falub C V, Rohrmann H, Bless M, Meduňa M, Marioni M, Schneider D, Richter J H, Padrun M 2017 AIP Adv. 7 056414.
[76] Queitsch U, Mccord J, Neudert A, Schäfer R, Schultz L, Rott K, Brückl H 2006 J. Appl. Phys. 100 093911.
[77] Mozooni B, Von Hofe T, Mccord J 2014 Phys. Rev. B 90 054410.
[78] Wu H, Hu W B, Wu Y T, Jia Y N, Wang W, Yang Q H, Bai F M 2025 IEEE Sens. J. 25 19062.
[79] Kittmann A, Müller C, Durdaut P, Thormählen L, Schell V, Niekiel F, Lofink F, Meyners D, Knöchel R, Höft M J S, McCord J, Quandt E 2020 Sensor Actuat. A 311 111998.
[80] Guan P, Liu Y H, Guo Y C 1989 Acta Phys. Sin. 38 2029 (in Chinse) [关鹏,刘宜华,郭贻诚 1989 38 2029].
[81] Hoshi Y, Kazama H, Naoe M, Yamanaka S I 1983 IEEE Trans. Magn. 19 1958.
[82] Phuoc N N, Ong C 2013 Adv. Mater. 25 980.
[83] Phuoc N N, Ong C K 2014 IEEE Trans. Magn. 50 2102306.
[84] Wang C, Zhang Y, Zhang P, Rong Y, Hsu T 2008 J. Magn. Magn. Mater. 320 683.
[85] Kim D Y, Yoon S S, Rao B P, Kim C, Kim K H, Takahashi M 2008 IEEE Trans. Magn. 44 3115.
Metrics
- Abstract views: 12
- PDF Downloads: 0
- Cited By: 0









下载: