Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Application of a-WO3 Simulated Memristors with Oxygen Vacancy Concentration Gradients in Neuromorphic Computing

WANG Hongjun ZHANG Miao ZHANG Yunfei WANG Xin ZHOU Jing ZHU Yuanyuan

Citation:

Application of a-WO3 Simulated Memristors with Oxygen Vacancy Concentration Gradients in Neuromorphic Computing

WANG Hongjun, ZHANG Miao, ZHANG Yunfei, WANG Xin, ZHOU Jing, ZHU Yuanyuan
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Amorphous tungsten trioxide (a-WO3) has emerged as an ideal candidate material for non-volatile memristors, attributed to its high concentration of oxygen vacancies, moderate band gap, and compatibility with CMOS technology. This renders it broad application prospects in neuromorphic computing systems. However, its poor analog switching performance severely hinders its practical application in high-efficiency artificial intelligence data processing. To enhance the analog switching performance of WO3 memristors, this study adopts radio frequency (RF) magnetron sputtering technology to deposit a five-layer amorphous tungsten trioxide (a-WO3) thin film with a gradient distribution of oxygen vacancy concentration on a platinum/silicon (Pt/Si) substrate. X-ray Photoelectron Spectroscopy (XPS) analysis confirms that the oxygen vacancy (Vo) concentration decreases gradually from the bottom to the top layer,verifying the successful fabrication of the five-layer a-WO3 thin film with a gradient distribution of oxygen vacancies. Compared with a-WO3 memristors with a uniform Vo concentration, the device with the Vo gradient distribution exhibits highly reliable analog switching characteristics (low cycle-to-cycle variability, high linearity in potentiation/depression processes), ultra-long data retention (>104 s), and self-current-limiting behavior. An artificial neural network (ANN) based on this structured memristor achieves a handwritten digit recognition accuracy of 97.64%. The RS essence of a-WO3 memristors with Vo concentration gradient distribution lies in the formation/rupture of VOdominated conductive filaments (CFs). The Vo gradient distribution enables controllable evolution of CFs by modifying the electric field and ion migration rules. During CF formation, oxygen ions migrate toward the top electrode, and Vo accumulates gradually first in the bottom electrode region; meanwhile, the electric field induced by Vo gradient suppresses the local abrupt growth of CFs, leading to the formation of uniform nonconical structures and avoiding resistance mutation. During CF rupture, ions migrate toward the bottom electrode, and non-conical CFs can rupture synchronously and progressively, ultimately achieving precise regulation of multi-level conductance. The conduction mechanism shows that the low-voltage region of the high-resistance state (HRS) exhibits an I-V linear relationship, corresponding to the ohmic conduction mechanism. In thehigh-voltage region of HRS, I has a linear relationship with both V2 and V2.5, which conforms to the space-charge-limited current (SCLC) theory. The gradient distribution of oxygen vacancies (VO) regulates the formation and rupture of conductive filaments (CFs), thereby solving the core issue of poor analog switching performance in traditional WO3 memristors. This provides a critical “Vo gradient regulation” design strategy for highdensity neuromorphic computing. It is expected to play a significant role in fields such as image recognition, speech recognition, and intelligent robots.
  • [1]

    Pan J Y, Kan H, Liu Z R, Gao S, Wu E X, Li Y, Zhang C W 2024 npj Flex. Electron. 8 70

    [2]

    Yan X B, Bai J H, Zhang Y X, Wang H, Zhao J H, Zhou Z Y, Sun Y, Wang Z R, Guo Z Q, Zhao Z, Niu J Z 2024 Mater. Today. Nano 25 100458

    [3]

    Feng C Y, Wu W W, Liu H D, Wang J K, Wan H Z, Ma G K, Wang H 2023 Nanomaterials 13 2720

    [4]

    Jang B, Kim J, Lee J, Jang J, Kwon H J 2024 J. Mater. Sci. Technol. 189 68

    [5]

    Ren J W, Shen H Z, Liu Z Y, Xu M, Li D H 2022 ACS Appl. Mater. Interfaces 14 21141

    [6]

    Park S O, Jeong H, Park J, Bae J, Choi S 2022 Nat. Commun. 13 2888

    [7]

    Wang Y, Chen S D, Cheng X H, Chen W, Xiong Z Y, Lv Z Y, Wu C Y, Wang L, Zhang G H, Zhu X B, Luo L B, Han S T 2023 Adv. Funct. Mater. 34 2309807

    [8]

    Abbas H, Li J Y, Ali A, Hussain S, Jung J W, Ang D S 2025 J. Mater. Sci. Technol. 216 99

    [9]

    Gong Y C, Ming J Y, Wu S Q, Yi M D, Xie L H, Huang W, Ling H F 2024 Acta Phys. Sin. 73 207302(in Chinese)[贡以纯,明建宇,吴思齐,仪明东,解令 海,黄维,凌海峰2024 73 207302]

    [10]

    Panda D, Hui Y F, Tseng T Y 2024 Nanoscale 16 16148

    [11]

    Ju D, Kim S 2024 Adv. Funct. Mater. 34 2409436

    [12]

    Ganaie M M, Kumar A, Shringi A K, Sahu S, Saliba M, Kumar M 2024 Adv. Funct. Mater. 34 2405080

    [13]

    Elshekh H, Wang H Y, Yang C, Zhu S H 2024 J. Appl. Phys. 135 135107

    [14]

    Hsu C C, Chuang H, Jhang W C 2021 J. Alloy. Compd. 882 160758

    [15]

    Mahata C, Pyo J, Jeon B, Ismail M, Moon J, Kim S 2023 Adv. Compos. Hybrid Mater. 6 144

    [16]

    Zhang K J, Ren K, Qin X Z, Zhu S H, Yang F, Zhao Y, Zhang Y 2021 IEEE Trans. Electron Devices 68 3807

    [17]

    Li C, Hsieh J, Hung M T, Huang B 2015 Vacuum 118 125

    [18]

    Li Z N, Tian B Y, Xue K H, Wang B, Xu M, Lu H, Sun H J, Miao X S 2019 IEEE Trans. Electron Devices 40 1068

    [19]

    Dai X H, Hua Q L, Jiang C S, Long Y, Dong Z L, Shi Y H, Huang T C, Li H T, Meng H X, Yang Y, Wei R L, Shen G Z, Hu W G 2024 Nano Energy 124 109473

    [20]

    Rudrapal K, Bhattacharya G, Adyam V, Chaudhuri A R 2022 Adv. Electron. Mater. 8 2200250

    [21]

    Cho Y, Kim J, Kang M, Kim S 2023 Materials 16 1687

    [22]

    Huang R M, Yan X Z, Ye S, Kashtiban R, Beanland R, Morgan K A, Charlton M D, Groot C D 2017 Nanoscale Res. Lett. 12 384

    [23]

    Zou L Q, Peng Z R, Sun H J, Yi Y H, Zhu C Q, Xu J Y, Zhang J M, Hu X B, Dang Y P, Ye L, Miao X S 2024 Adv. Funct. Mater. 35 2416325

    [24]

    Yue J L, Zou L Q, Bai N, Zhu C Q, Yi Y H, Xue F, Sun H J, Hu S, Cheng W M, He Q, Lu H, Ye L, Miao X S 2024 Small Methods 8 2301657

    [25]

    Huang W Y, Nie L H, Lai X C, Fang J L, Chen Z L, Chen J Y, Jiang Y P, Tang X G 2024 ACS Appl. Mater. Interfaces 16 23615

    [26]

    Qu Z Z, Zhang B L, Li C F, Peng Y T, Wang L P, Li Q X, Zeng Z H, Dong J H 2021 Electrochim. Acta 377 138123

    [27]

    Liu Y H, Wang C X, Li Z Y Wang Y S, Lu W Q, Huang H L 2021 Physica E 127 114515

    [28]

    Rajkumari R, Alam M W, Souayeh B, Singh N K 2024 J. Mater. Sci. 59 3270

    [29]

    Zhang L, Tang Z H, Yao D J, Fan Z Y, Hu S C, Sun Q J, Tang X G, Jiang Y P, Guo X B, Huang M Q 2022 Mater. Today Phy. 23 100650

    [30]

    Guo D, Wu Z, An Y, Li P, Wang P, Chu X, Guo X, Zhi Y, Lei M, Li L 2015 Appl. Phys. Lett. 106 042105

    [31]

    Kumari A, Shanbogh S M, Udachyan I, Kandaiah S, Roy A, Varade V, A. Ponnam 2020 ACS Appl. Mater. Interfaces 12 56568

    [32]

    Chabungbam A S, Kim M, Thakre A, Kim D E, Park H H 2025 J. Mater. Sci. Technol. 213 125

    [33]

    He X L, Chen P 2025 Acta Phys. Sin. 74 028501(in Chinese)[何小龙,陈鹏 2025 74 028501]

    [34]

    Chen T, Zhang T, Yin Y X, Xie Y S, Qiu X Y 2023 Acta Phys. Sin.72 148401(in Chinese)[陈涛,张涛,殷元祥,谢雨莎,邱晓燕2023 72 148401]

    [35]

    Ilyas N, Wang J Y, Li C M, Fu H, Li D Y, Jiang X D, Gu D, Jiang Y D, Li W 2022 J. Mater. Sci. Technol. 97 254

    [36]

    Wang Y C, Yan Y, Wang C, Chen Y T, Li J Y, Zhao J S, Hwang C S 2018 Appl. Phys. Lett. 113 072902

    [37]

    Chauhan M, Choudhary S, Sharma S K 2024 Adv. Electron. Mater. 10 2300724

    [38]

    Kim D, Shin J, Kim S 2022 Appl. Surf. Sci. 599 153876

    [39]

    Wang Y, Huang H X, Huang X L, Guo T T 2023 Acta Phys. Sin. 72 197201(in Chinese)[王英,黄慧香,黄香林,郭婷婷2023 72 197201]

    [40]

    Liu Y, Zhou X F, Yan H, Shi X, Chen K, Zhou J Y, Meng J L, Wang T Y, Ai Y L, Wu J X 2023 Adv. Mater. 35 2301321

    [41]

    Yang W H, Kan H, Shen G Z, Li Y 2024 Adv. Funct. Mater. 34 2312885

    [42]

    Kundale S S, Pawar P S, Kumbhar D D, Devara I K G, Sharma I, Patil P R, Lestari W A, Shim S, Park J, Dongale T D 2024 Adv. Sci. 11 2405251

    [43]

    Xiong X Y, Wu F, Yang Y O, Liu Y M, Wang Z G, Tian H, Dong M D 2023 Adv. Funct. Mater. 34 2213348

    [44]

    Huang J H, Yang S D, Tang X, Yang L L, Chen W J, Chen Z B, Li X M, Zeng Z P, Tang Z K, Gui X C 2023 Adv. Mater. 35 2303737[45] Zhang G B, Wang Z J, Fan X M, Wang Z, Li PT, Luo Q, Gao D W, Wan Q, Zhang Y S 2024 Appl. Phys. Lett. 125 133501

  • [1] ZHU Yuanyuan, YANG Ziyi, YANG Shuning, ZHANG Yunfei, ZHANG Miao, WANG Xin, WANG Hongjun, XU Jing. Stability of HfOx memristors based on oxygen vacancy regulation. Acta Physica Sinica, doi: 10.7498/aps.74.20250971
    [2] Gong Yi-Chun, Ming Jian-Yu, Wu Si-Qi, Yi Ming-Dong, Xie Ling-Hai, Huang Wei, Ling Hai-Feng. Recent progress of low-voltage memristor for neuromorphic computing. Acta Physica Sinica, doi: 10.7498/aps.73.20241022
    [3] Guo Hui-Meng, Liang Yan, Dong Yu-Jiao, Wang Guang-Yi. Simplification of Chua corsage memristor and hardware implementation of its neuron circuit. Acta Physica Sinica, doi: 10.7498/aps.72.20222013
    [4] Zhang Xing-Wen, He Chao-Tao, Li Xiu-Lin, Qiu Xiao-Yan, Zhang Yun, Chen Peng. Resistance switching effect regulated by magnetic field in Ni/ZnO/BiFeO3/ZnO multilayers. Acta Physica Sinica, doi: 10.7498/aps.71.20220609
    [5] Ren Kuan, Zhang Wo-Yu, Wang Fei, Guo Ze-Yu, Shang Da-Shan. Next-generation reservoir computing based on memristor array. Acta Physica Sinica, doi: 10.7498/aps.71.20220082
    [6] Wang Shi-Chang, Lu Zhen-Zhou, Liang Yan, Wang Guang-Yi. Neuromorphic behaviors of N-type locally-active memristor. Acta Physica Sinica, doi: 10.7498/aps.71.20212017
    [7] Chen Yang-Yang, He Yu-Hui, Miao Xiang-Shui, Yang Dao-Hong. 3D-NAND flash memory based neuromorphic computing. Acta Physica Sinica, doi: 10.7498/aps.71.20220974
    [8] Wen Xin-Yu, Wang Ya-Sai, He Yu-Hui, Miao Xiang-Shui. Memristive brain-like computing. Acta Physica Sinica, doi: 10.7498/aps.71.20220666
    [9] Liu Yi-Chun, Lin Ya, Wang Zhong-Qiang, Xu Hai-Yang. Oxide-based memristive neuromorphic synaptic devices. Acta Physica Sinica, doi: 10.7498/aps.68.20191262
    [10] Chen Yi-Hao, Xu Wei, Wang Yu-Qi, Wan Xiang, Li Yue-Feng, Liang Ding-Kang, Lu Li-Qun, Liu Xin-Wei, Lian Xiao-Juan, Hu Er-Tao, Guo Yu-Feng, Xu Jian-Guang, Tong Yi, Xiao Jian. Fabrication of synaptic memristor based on two-dimensional material MXene and realization of both long-term and short-term plasticity. Acta Physica Sinica, doi: 10.7498/aps.68.20182306
    [11] Xu Wei, Wang Yu-Qi, Li Yue-Feng, Gao Fei, Zhang Miao-Cheng, Lian Xiao-Juan, Wan Xiang, Xiao Jian, Tong Yi. Design of novel memristor-based neuromorphic circuit and its application in classical conditioning. Acta Physica Sinica, doi: 10.7498/aps.68.20191023
    [12] He Jin-Yun, Peng Dai-Jiang, Wang Yan-Wu, Long Fei, Zou Zheng-Guang. First principle calculation and photocatalytic performance of BixWO6 (1.81 ≤ x ≤ 2.01) with oxygen vacancies. Acta Physica Sinica, doi: 10.7498/aps.67.20172287
    [13] Yu Zhi-Qiang, Liu Min-Li, Lang Jian-Xun, Qian Kai, Zhang Chang-Hua. Resistive switching characteristics and resistive switching mechanism of Au/TiO2/FTO memristor. Acta Physica Sinica, doi: 10.7498/aps.67.20180425
    [14] Li Ping, Xu Yu-Tang. Monte Carlo simulation of time-dependent dielectric breakdown of oxide caused by migration of oxygen vacancies. Acta Physica Sinica, doi: 10.7498/aps.66.217701
    [15] Jiang Ran, Du Xiang-Hao, Han Zu-Yin, Sun Wei-Deng. Cluster distribution for oxygen vacancy in Ti/HfO2/Pt resistive switching memory device. Acta Physica Sinica, doi: 10.7498/aps.64.207302
    [16] Dai Guang-Zhen, Dai Yue-Hua, Xu Tai-Long, Wang Jia-Yu, Zhao Yuan-Yang, Chen Jun-Ning, Liu Qi. First principles study on influence of oxygen vacancy in HfO2 on charge trapping memory. Acta Physica Sinica, doi: 10.7498/aps.63.123101
    [17] Liu Yu-Dong, Wang Lian-Ming. Application of memristor-based spiking neural network in image edge extraction. Acta Physica Sinica, doi: 10.7498/aps.63.080503
    [18] Li Zhi-Jun, Zeng Yi-Cheng, Li Zhi-Bin. Memristive chaotic circuit based on modified SC-CNNs. Acta Physica Sinica, doi: 10.7498/aps.63.010502
    [19] Ma Li-Sha, Zhang Qian-Cheng, Cheng Lin. First-principles calculations on electronic structures of Zn adsorbed on the anatase TiO2 (101) surface having oxygen vacancy and hydroxyl groups. Acta Physica Sinica, doi: 10.7498/aps.62.187101
    [20] Gong Yu, Chen Bai-Hua, Xiong Liang-Ping, Gu Mei, Xiong Jie, Gao Xiao-Ling, Luo Yang-Ming, Hu Sheng, Wang Yu-Hua. Effect of oxygen vacancies on the fluorescence and phosphorescence properties of Ca5MgSi3O12:Eu2+, Dy3+. Acta Physica Sinica, doi: 10.7498/aps.62.153201
Metrics
  • Abstract views:  33
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  03 December 2025
  • /

    返回文章
    返回
    Baidu
    map