-
Exploring effective approaches to optimize the photoelectronic properties of functional materials is crucial for advancing next-generation optoelectronic devices. However, existing modulation strategies are frequently plagued by drawbacks including complex fabrication processes. However, conventional regulation approaches often suffer from complex processing, and the intrinsic relationship between structural evolution and performance enhancement in one-dimensional transition-metal dichalcogenides (TMDs) under extreme conditions remains elusive, hindering further performance improvement. In this study, high pressure is employed as a continuously tunable and clean external field to regulate the structural and photoelectric properties of one-dimensional transition-metal dichalcogenide nanotubes (NT-WS2). Utilizing a diamond anvil cell (DAC) combined with in situ high-pressure photocurrent measurements, Raman spectroscopy, and X-ray diffraction (XRD), we systematically investigated the pressure- dependent evolution of the crystal structure and photoelectric performance.The results demonstrate a remarkable pressure-driven enhancement in the optoelectronic response of NT- WS2. With increasing pressure, the device responsivity exhibits a dramatic rise from the initial 0.53 A/W to 43.75 A/W at 13.5 GPa—nearly two orders of magnitude higher. Correspondingly, the external quantum efficiency (EQE) and specific detectivity (D*) are enhanced by approximately 67-fold and 10-fold, respectively. The synergistic in situ spectroscopic and structural analyses reveal that this pronounced improvement originates from pressure-induced bandgap narrowing due to strengthened interlayer interactions, together with improved carrier transport facilitated by the compact stacking of nanotubes. This work not only deepens the understanding of the optoelectronic evolution mechanisms of 1D TMDs under extreme conditions but also provides a novel regulatory strategy to guide the design and optimization of high-performance nano-optoelectronic devices.
-
Keywords:
- High Pressure /
- Transition Metal Dichalcogenides /
- Nanotube /
- photoelectric response
-
[1] Tenne R, Margulis L, Genut M e, Hodes G 1992 Nature 360 444
[2] Rapoport L, Bilik Y, Feldman Y, Homyonfer M, Cohen S, Tenne R 1997 Nature 387 791
[3] Kaplan-Ashiri I 2004 Mechanical Properties of Individual WS2 Nanotubes AIP Conference Proceedings 723 306
[4] Wang M S, Kaplan-Ashiri I, Wei X L, Rosentsveig R, Wagner H D, Tenne R, Peng L M 2008 Nano Research 1 22
[5] Pelella A, Kumar A, Intonti K, Durante O, De Stefano S, Han X, Li Z, Guo Y, Giubileo F, Camilli L, Passacantando M, Zak A, Di Bartolomeo A 2024 Small 20 2403965
[6] Wang F, Wei S, Jin W, He X-L, Wang W, Wang F, Li F, Zhang X, An Q, He X, Xu J 2025 Journal of Physics D: Applied Physics 58 195103
[7] WU X Q, WANG L R, YUAN Y F, MA L, GUO H Z 2023 Chinese Journal of High Pressure Physics 37 050103 (in Chinese) [吴学仟,王玲瑞,袁亦方,马良,郭海中2023 高压 37 050103]
[8] Zhang Y J, Onga M, Qin F, Shi W, Zak A, Tenne R, Smet J, Iwasa Y 2018 2D Materials 5 035002
[9] Faella E, Lozzi L, Camilli L, Zak A, Giubileo F, Bartolomeo A D, Passacantando M 2025 Nanotechnology 36 325501
[10] Li C K, Zhu J L 2025 Acta Physica Sinica 74 176802 (in Chinese) [李辰恺, 朱金龙 2025 74 176802]
[11] Xia H, Lu Z-Y, Li T-X, Parkinson P, Liao Z-M, Liu F-H, Lu W, Hu W-D, Chen P-P, Xu H-Y 2012 Acs Nano 6 6005
[12] Gao L, Wang L, Kuklin A V, Gao J, Yin S, Ågren H, Zhang H 2021 Small 17 2105683
[13] Li Z, Li H, Liu N, Du M, Jin X, Li Q, Du Y, Guo L, Liu B 2021 Advanced Optical Materials 9 2101163
[14] Li Z, Jia B, Fang S, Li Q, Tian F, Li H, Liu R, Liu Y, Zhang L, Liu S, Liu B 2022 Advanced Science 10 2205837
[15] Li Z, Li Q, Li H, Tian F, Du M, Fang S, Liu R, Zhang L, Liu B 2022 Small Methods 6 2201044
[16] Yue L, Tian F, Liu R, Li Z, Li R, Li C, Li Y, Yang D, Li X, Li Q, Zhang L, Liu B 2025 National Science Review 12 nwae419
[17] Zhang X, Liu B, Liu S, Li J, Liu R, Wang P, Dong Q, Li S, Tian H, Li Q, Liu B 2021 Journal of Alloys and Compounds 867 158923
[18] Chen S, Li Z, Li S, Xu K, Ma N, Yue L, Jin X, Liu R, Dong Q, Li Q, Liu B 2025 Laser & Photonics Reviews 19 2500250
[19] Yan X L, Feng Z B, Yu L, Liu C L 2025 Acta Physica Sinica 74 177801 (in Chinese) [闫晓丽, 冯振豹, 于蓝, 刘才龙 2025 74 177801]
[20] Chi Z H, Zhao X M, Zhang H, Goncharov A F, Lobanov S S, Kagayama T, Sakata M, Chen X J 2014 Physical Review Letters 113 036802
[21] Ma X, Fu S, Ding J, Liu M, Bian A, Hong F, Sun J, Zhang X, Yu X, He D 2021 Nano Letters 21 8035
[22] Wang P, Wang Y, Qu J, Zhu Q, Yang W, Zhu J, Wang L, Zhang W, He D, Zhao Y 2018 Physical Review B 97 235202
[23] Lü X, Wang Y, Stoumpos C C, Hu Q, Guo X, Chen H, Yang L, Smith J S, Yang W, Zhao Y, Xu H, Kanatzidis M G, Jia Q 2016 Advanced Materials 28 8663
[24] Zhang J, Ji S, Ma Y, Guan R, Wu X, Qu X, Yan B, Zhang D, Zhao J, Yang J 2019 Nanoscale 11 11660
[25] Guo S, Bu K, Li J, Hu Q, Luo H, He Y, Wu Y, Zhang D, Zhao Y, Yang W, Kanatzidis M G, Lü X 2021 Journal of the American Chemical Society 143 2545
[26] Wu S Y, Ma S L, Zhao C Y, Li S X, Ye M Y, Qi M Y, Zhao X B, Wang L R, Cui T 2025 Acta Physica Sinica 74 178503 (in Chinese) [吴姝颖, 马帅领, 赵春燕, 李世新, 叶梅艳, 戚梦瑶, 赵行斌, 王玲瑞, 崔田 2025 74 178503]
[27] Liu T, Bu K, Zhang Q, Zhang P, Guo S, Liang J, Wang B, Zheng H, Wang Y, Yang W, Lü X 2022 Materials 15 3845
[28] Zhang X, Dong Q, Li Z, Jing X, Liu R, Liu B, Zhao T, Lin T, Li Q, Liu B 2022 Materials Research Letters 10 547
[29] Zak A, Sallacan-Ecker L, Margolin A, Feldman Y, Popovitz-Biro R, Albu-Yaron A, Genut M, Tenne R 2010 Fullerenes, Nanotubes and Carbon Nanostructures 19 18
[30] Bandaru N, Kumar R S, Baker J, Tschauner O, Hartmann T, Zhao Y, Venkat R 2014 International Journal of Modern Physics B 28 1450168
[31] Zhang Y J, Ideue T, Onga M, Qin F, Suzuki R, Zak A, Tenne R, Smet J H, Iwasa Y 2019 Nature 570 349
[32] Krause M, Virsek M, Remškar M, Kolitsch A, Möller W 2009 physica status solidi (b) 246 2786
[33] Staiger M, Rafailov P, Gartsman K, Telg H, Krause M, Radovsky G, Zak A, Thomsen C 2012 Physical Review B—Condensed Matter and Materials Physics 86 165423
[34] Yue L, Cui D, Tian F, Liu S, Li Z, Liu R, Yao Z, Li Y, Yang D, Li X 2024 Acta Materialia 263 119529
[35] Yue L, Xu D, Wei Z, Zhao T, Lin T, Tenne R, Zak A, Li Q, Liu B 2022 Materials 15 2838
[36] O’Neal K R, Cherian J G, Zak A, Tenne R, Liu Z, Musfeldt J L 2016 Nano Letters 16 993
Metrics
- Abstract views: 65
- PDF Downloads: 1
- Cited By: 0









下载: