Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Systematic study of the synthesis cross sections of superheavy nuclei with the dinuclear system model

DENG Xiangquan ZHOU Shangui

Citation:

Systematic study of the synthesis cross sections of superheavy nuclei with the dinuclear system model

DENG Xiangquan, ZHOU Shangui
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The synthesis of superheavy nuclei (SHN) is a leading research frontier in nuclear physics today. In the experiments for synthesizing SHN via fusion-evaporation reactions, the appropriate choice of projectile-target combination and determination of the optimal incident energy are crucial. The number of SHN that can be synthesized with stable projectiles is very small. The fusion-evaporation reaction with radioactive projectile is one of the promising ways for SHN synthesis and it is of great significance to investigate this kind of reactions deeply. In this work a systematic study has been carried out on the fusion-evaporation reactions with radioactive projectiles. The capture cross section is calculated with the empirical coupled channel model, the fusion probability is computed by the dinuclear system model with a dynamical potential energy surface (DNS-DyPES model) and the survival probability is determined through the statistical model.In the systematic study, 11 actinide isotopes with $Z=90$–100 are used as targets which are $^{232}{\rm{Th}}$, $^{231}{\rm{Pa}}$, $^{238}{\rm{U}}$, $^{237}{\rm{Np}}$, $^{244}{\rm{Pu}}$, $^{243}{\rm{Am}}$, $^{248}{\rm{Cm}}$, $^{249}{\rm{Bk}}$, $^{251}{\rm{Cf}}$, $^{254}{\rm{Es}}$ and $^{257}{\rm{Fm}}$. Projectiles are isotopes between proton and neutron drip lines for elements $Z=4$–32 and most of these projectiles are radioactive. By combining these projectiles and targets, 4969 reaction systems are proposed for synthesizing isotopes of superheavy elements $Z=104$–122. Through large-scale calculations, the excitation functions for $2n$–$5n$ evaporation channels of each reaction system are obtained. With the results of these reaction systems, we establish a synthesis cross section dataset for superheavy nuclei. For each reaction system, the dataset includes the identities of the synthesized SHN, the optimal incident energies and the maximal evaporation residue cross sections in $2n$–$5n$ evaporation channels. This dataset may serve as a theoretical support for synthesizing new superheavy nuclides and elements.Additionally, taking the reactions with $^{232}{\rm{Th}}$ target as examples, we discuss systematic trends in the results and explore the underlying SHN synthesis mechanism. The synthesis cross sections of these reactions, shown in Fig. 1, are in vastly differences. We find that inner fusion barrier of the compound system formed after the projectile touches the target and fission barrier of the compound nucleus are key factors that influence the synthesis cross section. Qualitatively, the projectile-target combinations with relatively large synthesis cross sections are featured by a lower inner fusion barrier in the compound system formed upon contact which favors fusion and a higher fission barrier in the compound nucleus which enhances survival probability. These conclusions may provide valuable references for the theoretical research related to superheavy nuclei synthesis. The dataset presented in this paper are available at the Science Data Bank at http://www.doi.org/10.57760/sciencedb.27854.
  • 图 1  反应体系$ ^{48} {\rm{Ca}}$+$ ^{238} {\rm{U}}$的(a)俘获截面$ \sigma_{\mathrm{capture}} $、(b)熔合概率$ P_{\mathrm{CN}} $、(c)存活概率$ W_{\mathrm{sur, }\; xn} $和(d)蒸发剩余截面$ \sigma_{\mathrm{ER}} $随质心系入射能$ E_{\mathrm{c.m.}} $的函数关系. 子图(a)中实验数据取自文献[99]. 子图(d)中实验数据取自文献[100]

    Figure 1.  (a) Capture cross section $ \sigma_{\mathrm{capture}} $, (b) fusion probability $ P_{\mathrm{CN}} $, (c) survival probability $ W_{\mathrm{sur, }\; xn} $ and (d) evaporation residue cross section $ \sigma_{\mathrm{ER}} $ as functions of the incident energy in the center-of-mass frame $ E_{\mathrm{c.m.}} $ for the reaction $ ^{48} {\rm{Ca}}$+$ ^{238} {\rm{U}}$. The experimental data in subfigure (a) are taken from Ref. [99]. The experimental data in subfigure (d) are taken from Ref. [100].

    图 2  合成108号超重元素同位素的最大蒸发剩余截面$ \sigma_{\mathrm{ER}} $和最佳反应道. 横坐标为超重核的质量数$ A_{\mathrm{SHN}} $. 纵坐标靶核电荷数$ Z_\mathrm{T} = 90{—}100 $对应的靶核分别为$ ^{232} {\rm{Th}}$、$ ^{231} {\rm{Pa}}$、$ ^{238} {\rm{U}}$、$ ^{237} {\rm{Np}}$、$ ^{244} {\rm{Pu}}$、$ ^{243} {\rm{Am}}$、$ ^{248} {\rm{Cm}}$、$ ^{249} {\rm{Bk}}$、$ ^{251} {\rm{Cf}}$、$ ^{254} {\rm{Es}}$和$ ^{257} {\rm{Fm}}$. 最佳反应道由数据点的形状给出: 叉形为$ 2 n $道; 正方形为$ 3 n $道; 圆形为$ 4 n $道; 三角形为$ 5 n $道

    Figure 2.  Maximal evaporation residue cross section $ \sigma_{\mathrm{ER}} $ and optimal reaction channel for synthesizing isotopes of superheavy element $ Z = 108 $. The horizontal coordinate represents the mass number of superheavy nuclei $ A_{\mathrm{SHN}} $. The vertical coordinate represents the charge number of target nucleus, the range $ Z_\mathrm{T} = 90{-}100 $ corresponds to target nuclei $ ^{232} {\rm{Th}}$, $ ^{231} {\rm{Pa}}$, $ ^{238} {\rm{U}}$, $ ^{237} {\rm{Np}}$, $ ^{244} {\rm{Pu}}$, $ ^{243} {\rm{Am}}$, $ ^{248} {\rm{Cm}}$, $ ^{249} {\rm{Bk}}$, $ ^{251} {\rm{Cf}}$, $ ^{254} {\rm{Es}}$ and $ ^{257} {\rm{Fm}}$, respectively. Optimal reaction channels are indicated by various symbols: cross for $ 2 n $ channel; square for $ 3 n $ channel; circle for $ 4 n $ channel; triangle for $ 5 n $ channel.

    图 3  合成119号超重元素同位素的最大蒸发剩余截面$ \sigma_{\mathrm{ER}} $和最佳反应道. 横坐标为超重核的质量数$ A_{\mathrm{SHN}} $. 纵坐标靶核电荷数$ Z_\mathrm{T} = 90{—}100 $对应的靶核分别为$ ^{232} {\rm{Th}}$、$ ^{231} {\rm{Pa}}$、$ ^{238} {\rm{U}}$、$ ^{237} {\rm{Np}}$、$ ^{244} {\rm{Pu}}$、$ ^{243} {\rm{Am}}$、$ ^{248} {\rm{Cm}}$、$ ^{249} {\rm{Bk}}$、$ ^{251} {\rm{Cf}}$、$ ^{254} {\rm{Es}}$和$ ^{257} {\rm{Fm}}$. 最佳反应道由数据点的形状给出: 叉形为$ 2 n $道; 正方形为$ 3 n $道; 圆形为$ 4 n $道; 三角形为$ 5 n $道

    Figure 3.  Maximal evaporation residue cross section $ \sigma_{\mathrm{ER}} $ and optimal reaction channel for synthesizing isotopes of superheavy element $ Z = 119 $. The horizontal coordinate represents the mass number of superheavy nuclei $ A_{\mathrm{SHN}} $. The vertical coordinate represents the charge number of target nucleus, the range $ Z_\mathrm{T} = 90{-}100 $ corresponds to target nuclei $ ^{232} {\rm{Th}}$, $ ^{231} {\rm{Pa}}$, $ ^{238} {\rm{U}}$, $ ^{237} {\rm{Np}}$, $ ^{244} {\rm{Pu}}$, $ ^{243} {\rm{Am}}$, $ ^{248} {\rm{Cm}}$, $ ^{249} {\rm{Bk}}$, $ ^{251} {\rm{Cf}}$, $ ^{254} {\rm{Es}}$ and $ ^{257} {\rm{Fm}}$, respectively. Optimal reaction channels are indicated by various symbols: cross for $ 2 n $ channel; square for $ 3 n $ channel; circle for $ 4 n $ channel; triangle for $ 5 n $ channel.

    图 4  $ ^{232} {\rm{Th}}$作为靶核, 不同放射性核素作为弹核的熔合蒸发反应合成104—122号超重元素同位素的最大蒸发剩余截面$ \sigma_{\mathrm{ER}} $. 横、纵坐标分别为超重核的中子数$ N_{\mathrm{SHN}} $和质子数$ Z_{\mathrm{SHN}} $. 根据截面大小可将这一核素图划分为4个区域, 这些区域的位置被标出

    Figure 4.  Maximal evaporation residue cross section $ \sigma_{\mathrm{ER}} $ for synthesizing isotopes of superheavy elements $ Z = 104 $–122 via fusion-evaporation reactions with $ ^{232} {\rm{Th}}$ as target and different radioactive nuclides as projectiles. The horizontal and vertical coordinates represent the neutron number $ N_{\mathrm{SHN}} $ and the proton number $ Z_{\mathrm{SHN}} $ of superheavy nuclei, respectively. This chart of nuclides is devided into four regions according to the magnitudes of the cross sections and their locations are indicated.

    图 5  图4中最大蒸发剩余截面对应的俘获截面$ \sigma_{\mathrm{capture}} $

    Figure 5.  Capture cross section $ \sigma_{\mathrm{capture}} $ corresponds to the maximal evaporation residue cross section in Fig. 4.

    图 6  (a) 图4中最大蒸发剩余截面对应的熔合概率$ P_{\mathrm{CN}} $和 (b) 这些反应体系的内熔合位垒高度$ B_\mathrm{fus}^{*} $

    Figure 6.  (a) Fusion probability $ P_{\mathrm{CN}} $ corresponding to the maximal evaporation residue cross section in Fig. 4 and (b) inner fusion barrier height $ B_\mathrm{fus}^{*} $ of these reaction systems.

    图 7  (a) 图4中最大蒸发剩余截面对应的存活概率$ W_{\mathrm{sur, }\; xn} $和 (b) 超重核的裂变位垒高度$ B_\mathrm{f} $[93]

    Figure 7.  (a) Survival probability $ W_{\mathrm{sur, }\; xn} $ corresponding to the maximal evaporation residue cross section in Fig. 4 and (b) fission barrier height $ B_\mathrm{f} $ of the superheavy nuclei[93].

    Baidu
  • [1]

    李璐璐, 吕炳楠, 王楠, 温凯, 夏铖君, 张振华, 赵杰, 赵恩广, 周善贵 2014 原子核物理评论 31 253

    Li L L, Lu B N, Wang N, Wen K, Xia C J, Zhang Z H, Zhao J, Zhao E G, Zhou S G 2014 Nucl. Phys. Rev. 31 253

    [2]

    周善贵 2014 物理 43 817

    Zhou S G 2014 PHYSICS 43 817

    [3]

    Oganessian Y T, Utyonkov V K 2015 Rep. Prog. Phys. 78 036301Google Scholar

    [4]

    Adamian G G, Antonenko N V, Bezbakh A N, Jolos R V 2016 Phys. Part. Nucl. 47 387Google Scholar

    [5]

    周善贵 2017 原子核物理评论 34 318

    Zhou S G 2017 Nucl. Phys. Rev. 34 318

    [6]

    Li L, Guo L, Godbey K, Umar A S 2022 Phys. Lett. B 833 137349Google Scholar

    [7]

    甘再国, 黄文学, 徐瑚珊, 赵红卫 2024 物理 53 803

    Gan Z G, Huang W X, Xu H S, Zhao H W 2024 PHYSICS 53 803

    [8]

    Li L, Guo L, Godbey K, Umar A S 2024 Phys. Rev. C 110 064607Google Scholar

    [9]

    姜义铭, 张丹丹, 周善贵 2025 物理 54 599

    Jiang Y M, Zhang D D, Zhou S G 2025 PHYSICS 54 599

    [10]

    邢凤竹, 乐先凯, 王楠, 王艳召 2025 74 112301Google Scholar

    Xing F Z, Le X K, Wang N, Wang Y Z 2025 Acta Phys. Sin. 74 112301Google Scholar

    [11]

    Zhang M H, Zhang Z Y, Gan Z G, Zhou S G, Zhang F S 2025 Nucl. Sci. Tech. 36 204Google Scholar

    [12]

    Bohr N, Wheeler J A 1939 Phys. Rev. 56 426Google Scholar

    [13]

    Myers W D, Swiatecki W J 1967 Ark. Phys. 36 343

    [14]

    Strutinsky V M 1966 Yad. Fiz. 3 614

    [15]

    Strutinsky V 1967 Nucl. Phys. A 95 420Google Scholar

    [16]

    Sobiczewski A, Gareev F, Kalinkin B 1966 Phys. Lett. 22 500Google Scholar

    [17]

    Meldner H 1967 Arkiv Fysik 36 593

    [18]

    Rutz K, Bender M, Bürvenich T, Schilling T, Reinhard P G, Maruhn J A, Greiner W 1997 Phys. Rev. C 56 238Google Scholar

    [19]

    Wong C Y 1966 Phys. Lett. 21 688Google Scholar

    [20]

    Nilsson S G, Tsang C F, Sobiczewski A, Szymański Z, Wycech S, Gustafson C, Lamm I L, Möller P, Nilsson B 1969 Nucl. Phys. A 131 1Google Scholar

    [21]

    Mosel U, Greiner W 1969 Z. Phys. A 222 261Google Scholar

    [22]

    Zhang W, Meng J, Zhang S Q, Geng L S, Toki H 2005 Nucl. Phys. A 753 106Google Scholar

    [23]

    Sobiczewski A, Pomorski K 2007 Prog. Part. Nucl. Phys. 58 292Google Scholar

    [24]

    Malov L A, Adamian G G, Antonenko N V, Lenske H 2021 Phys. Rev. C 104 064303

    [25]

    陈海军, 盛浩文, 黄文豪, 吴彬琪, 赵天亮, 包小军 2025 74 192301Google Scholar

    Chen H J, Sheng H W, Huang W H, Wu B Q, Zhao T L, Bao X J 2025 Acta Phys. Sin. 74 192301Google Scholar

    [26]

    Zagrebaev V, Greiner W 2008 Phys. Rev. C 78 034610Google Scholar

    [27]

    Hofmann S 2011 Radiochim. Acta 99 405Google Scholar

    [28]

    Hofmann S, Münzenberg G 2000 Rev. Mod. Phys. 72 733Google Scholar

    [29]

    Morita K, Morimoto K, Kaji D, Akiyama T, Goto S, Haba H, Ideguchi E, Kanungo R, Katori K, Koura H, Kudo H, Ohnishi T, Ozawa A, Suda T, Sueki K, Xu H S, Yamaguchi T, Yoneda A, Yoshida A, Zhao Y L 2004 J. Phys. Soc. Jpn. 73 2593Google Scholar

    [30]

    Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Shirokovsky I V, Tsyganov Y S, Gulbekian G G, Bogomolov S L, Mezentsev A N, Iliev S, Subbotin V G, Sukhov A M, Voinov A A, Buklanov G V, Subotic K, Zagrebaev V I, Itkis M G, Patin J B, Moody K J, Wild J F, Stoyer M A, Stoyer N J, Shaughnessy D A, Kenneally J M, Lougheed R W 2004 Phys. Rev. C 69 021601(R

    [31]

    Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Shirokovsky I V, Tsyganov Y S, Gulbekian G G, Bogomolov S L, Gikal B N, Mezentsev A N, Iliev S, Subbotin V G, Sukhov A M, Voinov A A, Buklanov G V, Subotic K, Zagrebaev V I, Itkis M G, Patin J B, Moody K J, Wild J F, Stoyer M A, Stoyer N J, Shaughnessy D A, Kenneally J M, Lougheed R W 2004 Phys. Rev. C 69 054607Google Scholar

    [32]

    Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Sagaidak R N, Shirokovsky I V, Tsyganov Y S, Voinov A A, Gulbekian G G, Bogomolov S L, Gikal B N, Mezentsev A N, Iliev S, Subbotin V G, Sukhov A M, Subotic K, Zagrebaev V I, Vostokin G K, Itkis M G, Moody K J, Patin J B, Shaughnessy D A, Stoyer M A, Stoyer N J, Wilk P A, Kenneally J M, Landrum J H, Wild J F, Lougheed R W 2006 Phys. Rev. C 74 044602Google Scholar

    [33]

    Oganessian Y T, Abdullin F S, Bailey P D, Benker D E, Bennett M E, Dmitriev S N, Ezold J G, Hamilton J H, Henderson R A, Itkis M G, Lobanov Y V, Mezentsev A N, Moody K J, Nelson S L, Polyakov A N, Porter C E, Ramayya A V, Riley F D, Roberto J B, Ryabinin M A, Rykaczewski K P, Sagaidak R N, Shaughnessy D A, Shirokovsky I V, Stoyer M A, Subbotin V G, Sudowe R, Sukhov A M, Tsyganov Y S, Utyonkov V K, Voinov A A, Vostokin G K, Wilk P A 2010 Phys. Rev. Lett. 104 142502Google Scholar

    [34]

    Boilley D, Cauchois B, Lü H L, Marchix A, Abe Y, Shen C W 2018 Nucl. Sci. Tech. 29 172Google Scholar

    [35]

    Adamian G G, Antonenko N V, Scheid W 2003 Phys. Rev. C 68 034601Google Scholar

    [36]

    贾飞, 徐瑚珊, 郑川, 樊瑞睿, 张雪荧, 李君清, W. Scheid 2007 56 2047Google Scholar

    Jia F, Xu H S, Zheng C, Fan R R, Zhang X Y, Li J Q, Scheid W 2007 Acta Phys. Sin. 56 2047Google Scholar

    [37]

    黄明辉, 甘再国, 范红梅, 苏朋源, 马龙, 周小红, 李君清 2008 57 1569Google Scholar

    Huang M H, Gan Z G, Fan H M, Su P Y, Ma L, Zhou X H, Li J Q 2008 Acta Phys. Sin. 57 1569Google Scholar

    [38]

    Nasirov A K, Giardina G, Mandaglio G, Manganaro M, Hanappe F, Heinz S, Hofmann S, Muminov A I, Scheid W 2009 Phys. Rev. C 79 024606Google Scholar

    [39]

    Wang N, Zhao E G, Scheid W, Zhou S G 2012 Phys. Rev. C 85 041601(R

    [40]

    Bao X J, Gao Y, Li J Q, Zhang H F 2015 Phys. Rev. C 92 034612Google Scholar

    [41]

    Li F, Zhu L, Wu Z H, Yu X B, Su J, Guo C C 2018 Phys. Rev. C 98 014618Google Scholar

    [42]

    Adamian G G, Antonenko N V, Lenske H, Malov L A 2020 Phys. Rev. C 101 034301Google Scholar

    [43]

    杨秀秀, 张根, 李静静, 李冰, 张欣蕊, A. T. Sokhna Cheikh, 程诗慧, 张钰海, 王晨, 张丰收 2020 原子核物理评论 37 151

    Yang X X, Zhang G, Li J J, Li B, Zhang X R, Sokhna Cheikh A T, Cheng S H, Zhang Y H, Wang C, Zhang F S 2020 Nucl. Phys. Rev. 37 151

    [44]

    Niu F, Chen P H, Feng Z Q 2021 Nucl. Sci. Tech. 32 103Google Scholar

    [45]

    Li J X, Zhang H F 2022 Phys. Rev. C 105 054606Google Scholar

    [46]

    Deng X Q, Zhou S G 2023 Phys. Rev. C 107 014616Google Scholar

    [47]

    Zagrebaev V I, Karpov A V, Greiner W 2012 Phys. Rev. C 85 014608Google Scholar

    [48]

    Liu Z H, Bao J D 2014 Phys. Rev. C 89 024604Google Scholar

    [49]

    Siwek-Wilczyńska K, Cap T, Kowal M 2019 Phys. Rev. C 99 054603Google Scholar

    [50]

    Liu L, Shen C W, Li Q F, Tu Y, Wang X B, Wang Y J 2016 Eur. Phys. J. A 52 35Google Scholar

    [51]

    Loveland W 2007 Phys. Rev. C 76 014612Google Scholar

    [52]

    Wang N, Tian J, Scheid W 2011 Phys. Rev. C 84 061601(R

    [53]

    Zhang J J, Wang C B, Ren Z Z 2013 Nucl. Phys. A 909 36Google Scholar

    [54]

    Zhu L, Xie W J, Zhang F S 2014 Phys. Rev. C 89 024615Google Scholar

    [55]

    Ghahramany N, Ansari A 2016 Eur. Phys. J. A 52 287Google Scholar

    [56]

    Santhosh K P, Safoora V 2017 Phys. Rev. C 96 034610Google Scholar

    [57]

    Lv X J, Yue Z Y, Zhao W J, Wang B 2021 Phys. Rev. C 103 064616Google Scholar

    [58]

    Wang B, Yue Z Y, Zhao W J 2021 Phys. Rev. C 103 034605Google Scholar

    [59]

    Zhu L 2023 Phys. Rev. Res. 5 L022030Google Scholar

    [60]

    Guo L, Shen C W, Yu C, Wu Z J 2018 Phys. Rev. C 98 064609Google Scholar

    [61]

    Volkov V V 1978 Phys. Rep. 44 93Google Scholar

    [62]

    Wang N, Zhao E G, Scheid W 2014 Phys. Rev. C 89 037601Google Scholar

    [63]

    Sun X X, Guo L 2022 Phys. Rev. C 105 054610Google Scholar

    [64]

    Sun X X, Guo L 2023 Phys. Rev. C 107 064609Google Scholar

    [65]

    Roberto J B, Alexander C W, Boll R A, Burns J D, Ezold J G, Felker L K, Hogle S L, Rykaczewski K P 2015 Nucl. Phys. A 944 99Google Scholar

    [66]

    Roberto J B 2018 Prog. Nucl. Sci. Tech. 5 14Google Scholar

    [67]

    Robinson S M, Benker D E, Collins E D, Ezold J G, Garrison J R, Hogle S L 2020 Radiochim. Acta 108 737Google Scholar

    [68]

    Yang J C, Xia J W, Xiao G Q, Xu H S, Zhao H W, Zhou X H, Ma X W, He Y, Ma L Z, Gao D Q, Meng J, Xu Z, Mao R S, Zhang W, Wang Y Y, Sun L T, Yuan Y J, Yuan P, Zhan W L, Shi J, Chai W P, Yin D Y, Li P, Li J, Mao L J, Zhang J Q, Sheng L N 2013 Nucl. Instrum. Methods Phys. Res. B 317 263Google Scholar

    [69]

    Ma X, Wen W Q, Zhang S F, Yu D Y, Cheng R, Yang J, Huang Z K, Wang H B, Zhu X L, Cai X, Zhao Y T, Mao L J, Yang J C, Zhou X H, Xu H S, Yuan Y J, Xia J W, Zhao H W, Xiao G Q, Zhan W L 2017 Nucl. Instrum. Methods Phys. Res. B 408 169Google Scholar

    [70]

    Adamian G G, Antonenko N V, Scheid W 2004 Phys. Rev. C 69 044601Google Scholar

    [71]

    Zagrebaev V I 2004 Prog. Theo. Phys. Supp. 154 122Google Scholar

    [72]

    Loveland W 2013 J. Phys: Conf. Ser. 420 012004Google Scholar

    [73]

    Aritomo Y 2007 Phys. Rev. C 75 024602Google Scholar

    [74]

    Bao X J, Gao Y, Li J Q, Zhang H F 2015 Phys. Rev. C 91 064612Google Scholar

    [75]

    Hong J, Adamian G G, Antonenko N V 2017 Phys. Rev. C 96 014609Google Scholar

    [76]

    Wu Z H, Zhu L, Li F, Yu X B, Su J, Guo C C 2018 Phys. Rev. C 97 064609Google Scholar

    [77]

    Zhang M H, Zou Y, Wang M C, Zhang G, Niu Q L, Zhang F S 2024 Nucl. Sci. Tech. 35 161Google Scholar

    [78]

    邓祥泉 2023博士学位论文 (北京: 中国科学院理论物理研究所)

    Deng X Q 2023 Ph. D. Dissertation (Beijing: Institute of Theoretical Physics, Chinese Academy of Sciences

    [79]

    Adamian G G, Antonenko N V, Scheid W, Volkov V V 1998 Nucl. Phys. A 633 409Google Scholar

    [80]

    Wang B, Wen K, Zhao W J, Zhao E G, Zhou S G 2017 At. Data Nucl. Data Tables 114 281Google Scholar

    [81]

    Li W, Wang N, Li J F, Xu H, Zuo W, Zhao E, Li J Q, Scheid W 2003 Europhys. Lett. 64 750Google Scholar

    [82]

    Feng Z Q, Jin G M, Fu F, Li J Q 2006 Nucl. Phys. A 771 50Google Scholar

    [83]

    Wang N, Li J Q, Zhao E G 2008 Phys. Rev. C 78 054607Google Scholar

    [84]

    Grangé P, Li J Q, Weidenmüller H 1983 Phys. Rev. C 27 2063Google Scholar

    [85]

    Adamian G G, Antonenko N V, Jolos R V, Ivanova S P, Melnikova O I 1996 Int. J. Mod. Phys. E 5 191Google Scholar

    [86]

    Wong C Y 1973 Phys. Rev. Lett. 31 766Google Scholar

    [87]

    Audi G, Wapstra A H, Thibault C 2003 Nucl. Phys. A 729 337Google Scholar

    [88]

    Möller P, Nix J R, Myers W D, Swiatecki W J 1995 At. Data Nucl. Data Tables 59 185Google Scholar

    [89]

    Bohr A, Mottelson B R 1975 Nuclear Structure (Vol. II) (New York: Benjamin) p658

    [90]

    Wolschin G 1979 Phys. Lett. B 88 35Google Scholar

    [91]

    Xia C J, Sun B X, Zhao E G, Zhou S G 2011 Sci. China Phys. Mech. Astron. 54 s109Google Scholar

    [92]

    Jackson J D 1956 Can. J. Phys. 34 767Google Scholar

    [93]

    Möller P, Sierk A J, Ichikawa T, Sagawa H 2016 At. Data Nucl. Data Tables 109-110 1Google Scholar

    [94]

    Tōke J, Światecki W J 1981 Nucl. Phys. A 372 141Google Scholar

    [95]

    Schmidt K H, Morawek W 1991 Rep. Prog. Phys. 54 949Google Scholar

    [96]

    Ignatyuk A V, Istekov K K, Smirenkin G N 1979 Yad. Fiz. 29 875

    [97]

    Zubov A S, Adamian G G, Antonenko N V 2009 Phys. Part. Nucl. 40 847Google Scholar

    [98]

    Bhat M R 1991 Proceedings of an International Conference on Nuclear Data for Science and Technology Forschungszentrum Jülich, Fed. Rep. of Germany, May 13–17, 1991 p817

    [99]

    Nishio K, Mitsuoka S, Nishinaka I, Makii H, Wakabayashi Y, Ikezoe H, Hirose K, Ohtsuki T, Aritomo Y, Hofmann S 2012 Phys. Rev. C 86 034608Google Scholar

    [100]

    Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Shirokovsky I V, Tsyganov Y S, Gulbekian G G, Bogomolov S L, Gikal B N, Mezentsev A N, Iliev S, Subbotin V G, Sukhov A M, Voinov A A, Buklanov G V, Subotic K, Zagrebaev V I, Itkis M G, Patin J B, Moody K J, Wild J F, Stoyer M A, Stoyer N J, Shaughnessy D A, Kenneally J M, Wilk P A, Lougheed R W, Il'kaev R I, Vesnovskii S P 2004 Phys. Rev. C 70 064609Google Scholar

    [101]

    Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Sagaidak R N, Shirokovsky I V, Tsyganov Y S, Voinov A A, Gulbekian G G, Bogomolov S L, Gikal B N, Mezentsev A N, Subbotin V G, Sukhov A M, Subotic K, Zagrebaev V I, Vostokin G K, Itkis M G, Henderson R A, Kenneally J M, Landrum J H, Moody K J, Shaughnessy D A, Stoyer M A, Stoyer N J, Wilk P A 2007 Phys. Rev. C 76 011601(R

    [102]

    Oganessian Y T, Abdullin F S, Dmitriev S N, Gostic J M, Hamilton J H, Henderson R A, Itkis M G, Moody K J, Polyakov A N, Ramayya A V, Roberto J B, Rykaczewski K P, Sagaidak R N, Shaughnessy D A, Shirokovsky I V, Stoyer M A, Stoyer N J, Subbotin V G, Sukhov A M, Tsyganov Y S, Utyonkov V K, Voinov A A, Vostokin G K 2013 Phys. Rev. C 87 014302

    [103]

    Oganessian Y T, Abdullin F S, Alexander C, Binder J, Boll R A, Dmitriev S N, Ezold J, Felker K, Gostic J M, Grzywacz R K, Hamilton J H, Henderson R A, Itkis M G, Miernik K, Miller D, Moody K J, Polyakov A N, Ramayya A V, Roberto J B, Ryabinin M A, Rykaczewski K P, Sagaidak R N, Shaughnessy D A, Shirokovsky I V, Shumeiko M V, Stoyer M A, Stoyer N J, Subbotin V G, Sukhov A M, Tsyganov Y S, Utyonkov V K, Voinov A A, Vostokin G K 2013 Phys. Rev. C 87 054621Google Scholar

    [104]

    Oganessian Y T, Utyonkov V K, Kovrizhnykh N D, Abdullin F S, Dmitriev S N, Ibadullayev D, Itkis M G, Kuznetsov D A, Petrushkin O V, Podshibiakin A V, Polyakov A N, Popeko A G, Sagaidak R N, Schlattauer L, Shirokovski I V, Shubin V D, Shumeiko M V, Solovyev D I, Tsyganov Y S, Voinov A A, Subbotin V G, Bodrov A Y, Sabel'nikov A V, Khalkin A V, Zlokazov V B, Rykaczewski K P, King T T, Roberto J B, Brewer N T, Grzywacz R K, Gan Z G, Zhang Z Y, Huang M H, Yang H B 2022 Phys. Rev. C 106 L031301

  • [1] WANG Hanlin, WANG Zhen, REN Zhongzhou. Theoretical calculations on the half-lives of spontaneous one-proton radioactivity. Acta Physica Sinica, doi: 10.7498/aps.75.20251244
    [2] ZHANG Yuhai, DONG Yifei, ZHONG Jiayong, ZHANG Fengshou. Research Progress in Nuclear Fusion Reactions. Acta Physica Sinica, doi: 10.7498/aps.75.20251346
    [3] Xia Jin-Ge, Li Wei-Feng, Fang Ji-Yu, Niu Zhong-Ming. An empirical formula of nuclear β-decay half-lives. Acta Physica Sinica, doi: 10.7498/aps.73.20231653
    [4] Chen Cui-Hong, Li Zhan-Kui, Wang Xiu-Hua, Li Rong-Hua, Fang Fang, Wang Zhu-Sheng, Li Hai-Xia. Development of high performance PIN-silicon detector and its application in radioactive beam physical experiment. Acta Physica Sinica, doi: 10.7498/aps.72.20230213
    [5] Qu Wei-Wei, Zhang Gao-Long, Le Xiao-Yun. Systematic analysis of the fusion barrier heights and positions for projectile using the double folding model. Acta Physica Sinica, doi: 10.7498/aps.61.152501
    [6] Zheng Shu-Dong, Li Bo-Wen, Li Ji-Guang, Dong Chen-Zhong, Yuan Wen-Yuan. The influences of the finite nuclear size effects on the energy levels and wavefunctions of hydrogen-like ions. Acta Physica Sinica, doi: 10.7498/aps.58.1556
    [7] Huang Ming-Hui, Gan Zai-Guo, Fan Hong-Mei, Su Peng-Yuan, Ma Long, Zhou Xiao-Hong, Li Jun-Qing. The driving potential and cross sections for synthesizing super heavy nuclei with hot fusion. Acta Physica Sinica, doi: 10.7498/aps.57.1569
    [8] Jia Fei, Xu Hu-Shan, Zheng Chuan, Fan Rui-Rui, Zhang Xue-Ying, Li Jun-Qing, Scheid W.. Study of the mechanism for synthesizing superheavy nuclei based on dinuclear system. Acta Physica Sinica, doi: 10.7498/aps.56.2047
    [9] QIAN XING, JIANG DONG-XING, LIN JUN-SONG, LIU DA-MING, LI ZE. THE AVERAGE ANGULAR MOMENTUM IN HEAVY-ION INDUCED FUSION REACTION BY OFF-LINE γ TECHNIQUE. Acta Physica Sinica, doi: 10.7498/aps.45.754
    [10] MENG JIE. VARIATION OF PAIR CORRELATION IN FAST ROTATING NUCLEI. Acta Physica Sinica, doi: 10.7498/aps.42.368
    [11] WANG GUANG-HOU. 15N NUCLEAR RESONANCE REACTION AND HYDROGEN PROFILE IN PALLADIUM. Acta Physica Sinica, doi: 10.7498/aps.33.53
    [12] YANG KUO-SHEN. ON THE gR FACTOR OF NUCLEI. Acta Physica Sinica, doi: 10.7498/aps.19.771
    [13] TSENG, C. Y., SHAN, Q. Z., CHENG, L. S.. THE SUPERFLUIDITY EFFECTS IN LIGHT NUCLEI. Acta Physica Sinica, doi: 10.7498/aps.19.360
    [14] C. T. YOUNG. NUCLEAR REACTIONS AND NUCLEAR STRUCTURE. Acta Physica Sinica, doi: 10.7498/aps.18.275
    [15] CHANG LI-NING, DAI YUAN-BENG. THE RADIATIVE CAPTURE OF μ- MESON BY NUCLEUS. Acta Physica Sinica, doi: 10.7498/aps.17.41
    [16] HO ZAH-WEI, LOU TSU-YING, SUN HAN-TCHENG. ON THE PROCESS OF THE PREPARATION OF NUCLEAR EMULSIONS N-2 and N-3. Acta Physica Sinica, doi: 10.7498/aps.15.131
    [17] О ТЕОРИИ ОБОЛОЧНЫХ СТРУКТУР ЯДЕР. Acta Physica Sinica, doi: 10.7498/aps.15.420
    [18] ДЕФОРМАЦИЯ ЛЕГКИХ ЯДЕР. Acta Physica Sinica, doi: 10.7498/aps.14.449
    [19] LI CHENG-WU. MASSES OF LIGHT NUCLEI. Acta Physica Sinica, doi: 10.7498/aps.13.30
    [20] HOANG TCHANG-FONG. INVESTIGATION ON HEAVY NUCLEI BY PHOTOGRAPHIC METHOD. Acta Physica Sinica, doi: 10.7498/aps.8.183
Metrics
  • Abstract views:  437
  • PDF Downloads:  6
  • Cited By: 0
Publishing process
  • Received Date:  23 September 2025
  • Accepted Date:  20 October 2025
  • Available Online:  29 October 2025
  • /

    返回文章
    返回
    Baidu
    map