- 
				The synthesis of superheavy nuclei (SHN) is a leading research frontier in nuclear physics today. In the experiments for synthesizing SHN via fusion-evaporation reactions, the appropriate choice of projectile-target combination and determination of the optimal incident energy are crucial. The number of SHN that can be synthesized with stable projectiles is very small. The fusion-evaporation reaction with radioactive projectile is one of the promising ways for SHN synthesis and it is of great significance to investigate this kind of reactions deeply. In this work a systematic study has been carried out on the fusion-evaporation reactions with radioactive projectiles. The capture cross section is calculated with the empirical coupled channel model, the fusion probability is computed by the dinuclear system model with a dynamical potential energy surface (DNS-DyPES model) and the survival probability is determined through the statistical model.
In the systematic study, 11 actinide isotopes with $Z=90$--100 are used as targets which are $^{232}$Th, $^{231}$Pa, $^{238}$U, $^{237}$Np, $^{244}$Pu, $^{243}$Am, $^{248}$Cm, $^{249}$Bk, $^{251}$Cf, $^{254}$Es and $^{257}$Fm. Projectiles are isotopes between proton and neutron drip lines for elements $Z=4$--32 and most of these projectiles are radioactive. By combining these projectiles and targets, 4969 reaction systems are proposed for synthesizing isotopes of superheavy elements Z=104-122. Through large-scale calculations, the excitation functions for $2n$--$5n$ evaporation channels of each reaction system are obtained. With the results of these reaction systems, we establish a synthesis cross section dataset for superheavy nuclei. For each reaction system, the dataset includes the identities of the synthesized SHN, the optimal incident energies and the maximal evaporation residue cross sections in $2n$-$5n$ evaporation channels. This dataset may serve as a theoretical support for synthesizing new superheavy nuclides and elements.
Additionally, taking the reactions with $^{232}$Th target as examples, we discuss systematic trends in the results and explore the underlying SHN synthesis mechanism. The synthesis cross sections of these reactions, shown in Fig. 1, are in vastly differences. We find that inner fusion barrier of the compound system formed after the projectile touches the target and fission barrier of the compound nucleus are key factors that influence the synthesis cross section. Qualitatively, the projectile-target combinations with relatively large synthesis cross sections are featured by a lower inner fusion barrier in the compound system formed upon contact which favors fusion and a higher fission barrier in the compound nucleus which enhances survival probability. These conclusions may provide valuable references for the theoretical research related to superheavy nuclei synthesis. The dataset presented in this paper are available at the Science Data Bank at http://www.doi.org/10.57760/sciencedb.27854 (Please use the private access link https://www.scidb.cn/s/bimY7j to access the dataset during the peer review process).- 
										Keywords:
										
 - Superheavy nuclei /
 - Heavy-ion fusion-evaporation reactions /
 - Radioactive beams /
 - Dinuclear system models
 
 - 
				
[1] Li L L, Lu B N, Wang N, Wen K, Xia C J, Zhang Z H, Zhao J, Zhao E G, Zhou S G 2014 Nucl. Phys. Rev. 31 253 (in Chinese)[李璐璐, 吕炳楠, 王楠, 温凯, 夏铖君, 张振华, 赵杰, 赵恩广, 周善贵 2014 原子核物理评论 31 253]
[2] Zhou S G 2014 PHYSICS 43 817 (in Chinese)[周善贵 2014 物理 43 817]
[3] Oganessian Y T, Utyonkov V K 2015 Rep. Prog. Phys. 78 036301
[4] Adamian G G, Antonenko N V, Bezbakh A N, Jolos R V 2016 Phys. Part. Nucl. 47 387
[5] Zhou S G 2017 Nucl. Phys. Rev. 34 318 (in Chinese)[周善贵 2017 原子核物理评论 34 318]
[6] Li L, Guo L, Godbey K, Umar A S 2022 Phys. Lett. B 833 137349
[7] Gan Z G, Huang W X, Xu H S, Zhao H W 2024 PHYSICS 53 803 (in Chinese)[甘再国, 黄文学, 徐 瑚珊, 赵红卫 2024 物理 53 803]
[8] Li L, Guo L, Godbey K, Umar A S 2024 Phys. Rev. C 110 064607
[9] Jiang Y M, Zhang D D, Zhou S G 2025 PHYSICS 54 599 (in Chinese)[姜义铭, 张丹丹, 周善贵 2025 物理 54 599]
[10] Xing F Z, Le X K, Wang N, Wang Y Z 2025 Acta Phys. Sin. 74 112301 (in Chinese)[邢凤竹, 乐先 凯, 王楠, 王艳召 2025 74 112301]
[11] Zhang M H, Zhang Z Y, Gan Z G, Zhou S G, Zhang F S 2025 Nucl. Sci. Tech. 36 204
[12] Bohr N, Wheeler J A 1939 Phys. Rev. 56 426
[13] Myers W D, Swiatecki W J 1967 Ark. Phys. 36 343
[14] Strutinsky V M 1966 Yad. Fiz. 3 614
[15] Strutinsky V 1967 Nucl. Phys. A 95 420
[16] Sobiczewski A, Gareev F, Kalinkin B 1966 Phys. Lett. 22 500
[17] Meldner H 1967 Arkiv Fysik 36 593
[18] Rutz K, Bender M, Bürvenich T, Schilling T, Reinhard P G, Maruhn J A, Greiner W 1997 Phys. Rev. C 56 238
[19] Wong C Y 1966 Phys. Lett. 21 688
[20] Nilsson S G, Tsang C F, Sobiczewski A, Szymański Z, Wycech S, Gustafson C, Lamm I L, Möller P, Nilsson B 1969 Nucl. Phys. A 131 1
[21] Mosel U, Greiner W 1969 Z. Phys. A 222 261
[22] Zhang W, Meng J, Zhang S Q, Geng L S, Toki H 2005 Nucl. Phys. A 753 106
[23] Sobiczewski A, Pomorski K 2007 Prog. Part. Nucl. Phys. 58 292
[24] Malov L A, Adamian G G, Antonenko N V, Lenske H 2021 Phys. Rev. C 104 064303
[25] Chen H J, Sheng H W, Huang W H, Wu B Q, Zhao T L, Bao X J 2025 Acta Phys. Sin. 74 192301 (in Chinese)[陈海军, 盛浩文, 黄文豪, 吴彬琪, 赵天亮, 包小军 2025 74 192301]
[26] Zagrebaev V, Greiner W 2008 Phys. Rev. C 78 034610
[27] Hofmann S 2011 Radiochim. Acta 99 405
[28] Hofmann S, Münzenberg G 2000 Rev. Mod. Phys. 72 733
[29] Morita K, Morimoto K, Kaji D, Akiyama T, Goto S, Haba H, Ideguchi E, Kanungo R, Katori K, Koura H, Kudo H, Ohnishi T, Ozawa A, Suda T, Sueki K, Xu H S, Yamaguchi T, Yoneda A, Yoshida A, Zhao Y L 2004 J. Phys. Soc. Jpn. 73 2593
[30] Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Shirokovsky I V, Tsyganov Y S, Gulbekian G G, Bogomolov S L, Mezentsev A N, Iliev S, Subbotin V G, Sukhov A M, Voinov A A, Buklanov G V, Subotic K, Zagrebaev V I, Itkis M G, Patin J B, Moody K J, Wild J F, Stoyer M A, Stoyer N J, Shaughnessy D A, Kenneally J M, Lougheed R W 2004 Phys. Rev. C 69 021601(R)
[31] Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Shirokovsky I V, Tsyganov Y S, Gulbekian G G, Bogomolov S L, Gikal B N, Mezentsev A N, Iliev S, Subbotin V G, Sukhov A M, Voinov A A, Buklanov G V, Subotic K, Zagrebaev V I, Itkis M G, Patin J B, Moody K J, Wild J F, Stoyer M A, Stoyer N J, Shaughnessy D A, Kenneally J M, Lougheed R W 2004 Phys. Rev. C 69 054607
[32] Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Sagaidak R N, Shirokovsky I V, Tsyganov Y S, Voinov A A, Gulbekian G G, Bogomolov S L, Gikal B N, Mezentsev A N, Iliev S, Subbotin V G, Sukhov A M, Subotic K, Zagrebaev V I, Vostokin G K, Itkis M G, Moody K J, Patin J B, Shaughnessy D A, Stoyer M A, Stoyer N J, Wilk P A, Kenneally J M, Landrum J H, Wild J F, Lougheed R W 2006 Phys. Rev. C 74 044602
[33] Oganessian Y T, Abdullin F S, Bailey P D, Benker D E, Bennett M E, Dmitriev S N, Ezold J G, Hamilton J H, Henderson R A, Itkis M G, Lobanov Y V, Mezentsev A N, Moody K J, Nelson S L, Polyakov A N, Porter C E, Ramayya A V, Riley F D, Roberto J B, Ryabinin M A, Rykaczewski K P, Sagaidak R N, Shaughnessy D A, Shirokovsky I V, Stoyer M A, Subbotin V G, Sudowe R, Sukhov A M, Tsyganov Y S, Utyonkov V K, Voinov A A, Vostokin G K, Wilk P A 2010 Phys. Rev. Lett. 104 142502
[34] Boilley D, Cauchois B, Lü H L, Marchix A, Abe Y, Shen C W 2018 Nucl. Sci. Tech. 29 172
[35] Adamian G G, Antonenko N V, Scheid W 2003 Phys. Rev. C 68 034601
[36] Jia F, Xu H S, Zheng C, Fan R R, Zhang X Y, Li J Q, Scheid W 2007 Acta Phys. Sin. 56 2047 (in Chinese)[贾飞, 徐瑚珊, 郑川, 樊瑞睿, 张雪荧, 李君清, W. Scheid 2007 56 2047]
[37] Huang M H, Gan Z G, Fan H M, Su P Y, Ma L, Zhou X H, Li J Q 2008 Acta Phys. Sin. 57 1569 (in Chinese)[黄明辉, 甘再国, 范红梅, 苏朋源, 马龙, 周小红, 李君清 2008 57 1569]
[38] Nasirov A K, Giardina G, Mandaglio G, Manganaro M, Hanappe F, Heinz S, Hofmann S, Muminov A I, Scheid W 2009 Phys. Rev. C 79 024606
[39] Wang N, Zhao E G, Scheid W, Zhou S G 2012 Phys. Rev. C 85 041601(R)
[40] Bao X J, Gao Y, Li J Q, Zhang H F 2015 Phys. Rev. C 92 034612
[41] Li F, Zhu L, Wu Z H, Yu X B, Su J, Guo C C 2018 Phys. Rev. C 98 014618
[42] Adamian G G, Antonenko N V, Lenske H, Malov L A 2020 Phys. Rev. C 101 034301
[43] Yang X X, Zhang G, Li J J, Li B, Zhang X R, Sokhna Cheikh A T, Cheng S H, Zhang Y H, Wang C, Zhang F S 2020 Nucl. Phys. Rev. 37 151 (in Chinese)[杨秀秀,张根,李静静, 李冰, 张欣蕊, A. T. Sokhna Cheikh, 程诗慧, 张钰海, 王晨, 张丰收 2020 原子核物理评论 37 151]
[44] Niu F, Chen P H, Feng Z Q 2021 Nucl. Sci. Tech. 32 103
[45] Li J X, Zhang H F 2022 Phys. Rev. C 105 054606
[46] Deng X Q, Zhou S G 2023 Phys. Rev. C 107 014616
[47] Zagrebaev V I, Karpov A V, Greiner W 2012 Phys. Rev. C 85 014608
[48] Liu Z H, Bao J D 2014 Phys. Rev. C 89 024604
[49] Siwek-Wilczyńska K, Cap T, Kowal M 2019 Phys. Rev. C 99 054603
[50] Liu L, Shen C W, Li Q F, Tu Y, Wang X B, Wang Y J 2016 Eur. Phys. J. A 52 35
[51] Loveland W 2007 Phys. Rev. C 76 014612
[52] Wang N, Tian J, Scheid W 2011 Phys. Rev. C 84 061601(R)
[53] Zhang J J, Wang C B, Ren Z Z 2013 Nucl. Phys. A 909 36
[54] Zhu L, Xie W J, Zhang F S 2014 Phys. Rev. C 89 024615
[55] Ghahramany N, Ansari A 2016 Eur. Phys. J. A 52 287
[56] Santhosh K P, Safoora V 2017 Phys. Rev. C 96 034610
[57] Lv X J, Yue Z Y, Zhao W J, Wang B 2021 Phys. Rev. C 103 064616
[58] Wang B, Yue Z Y, Zhao W J 2021 Phys. Rev. C 103 034605
[59] Zhu L 2023 Phys. Rev. Res. 5 L022030
[60] Guo L, Shen C W, Yu C, Wu Z J 2018 Phys. Rev. C 98 064609
[61] Volkov V V 1978 Phys. Rep. 44 93
[62] Wang N, Zhao E G, Scheid W 2014 Phys. Rev. C 89 037601
[63] Sun X X, Guo L 2022 Phys. Rev. C 105 054610
[64] Sun X X, Guo L 2023 Phys. Rev. C 107 064609
[65] Roberto J B, Alexander C W, Boll R A, Burns J D, Ezold J G, Felker L K, Hogle S L, Rykaczewski K P 2015 Nucl. Phys. A 944 99
[66] Roberto J B 2018 Prog. Nucl. Sci. Tech. 5 14
[67] Robinson S M, Benker D E, Collins E D, Ezold J G, Garrison J R, Hogle S L 2020 Radiochim. Acta 108 737
[68] Yang J C, Xia J W, Xiao G Q, Xu H S, Zhao H W, Zhou X H, Ma X W, He Y, Ma L Z, Gao D Q, Meng J, Xu Z, Mao R S, Zhang W, Wang Y Y, Sun L T, Yuan Y J, Yuan P, Zhan W L, Shi J, Chai W P, Yin D Y, Li P, Li J, Mao L J, Zhang J Q, Sheng L N 2013 Nucl. Instrum. Methods Phys. Res. B 317 263
[69] Ma X, Wen W Q, Zhang S F, Yu D Y, Cheng R, Yang J, Huang Z K, Wang H B, Zhu X L, Cai X, Zhao Y T, Mao L J, Yang J C, Zhou X H, Xu H S, Yuan Y J, Xia J W, Zhao H W, Xiao G Q, Zhan W L 2017 Nucl. Instrum. Methods Phys. Res. B 408 169
[70] Adamian G G, Antonenko N V, Scheid W 2004 Phys. Rev. C 69 044601
[71] Zagrebaev V I 2004 Prog. Theo. Phys. Supp. 154 122
[72] Loveland W 2013 J. Phys: Conf. Ser. 420 012004
[73] Aritomo Y 2007 Phys. Rev. C 75 024602
[74] Bao X J, Gao Y, Li J Q, Zhang H F 2015 Phys. Rev. C 91 064612
[75] Hong J, Adamian G G, Antonenko N V 2017 Phys. Rev. C 96 014609
[76] Wu Z H, Zhu L, Li F, Yu X B, Su J, Guo C C 2018 Phys. Rev. C 97 064609
[77] Zhang M H, Zou Y, Wang M C, Zhang G, Niu Q L, Zhang F S 2024 Nucl. Sci. Tech. 35 161
[78] Deng X Q 2023 Ph. D. Dissertation (Beijing: Institute of Theoretical Physics, Chinese Academy of Sciences) (in Chinese)[邓祥泉 2023 博士学位论文 (北京:中国科学院理论物理研究所)]
[79] Adamian G G, Antonenko N V, Scheid W, Volkov V V 1998 Nucl. Phys. A 633 409
[80] Wang B, Wen K, Zhao W J, Zhao E G, Zhou S G 2017 At. Data Nucl. Data Tables 114 281
[81] Li W, Wang N, Li J F, Xu H, Zuo W, Zhao E, Li J Q, Scheid W 2003 Europhys. Lett. 64 750
[82] Feng Z Q, Jin G M, Fu F, Li J Q 2006 Nucl. Phys. A 771 50
[83] Wang N, Li J Q, Zhao E G 2008 Phys. Rev. C 78 054607
[84] Grangé P, Li J Q, Weidenmüller H 1983 Phys. Rev. C 27 2063
[85] Adamian G G, Antonenko N V, Jolos R V, Ivanova S P, Melnikova O I 1996 Int. J. Mod. Phys. E 5 191
[86] Wong C Y 1973 Phys. Rev. Lett. 31 766
[87] Audi G, Wapstra A H, Thibault C 2003 Nucl. Phys. A 729 337
[88] Möller P, Nix J R, Myers W D, Swiatecki W J 1995 At. Data Nucl. Data Tables 59 185
[89] Bohr A, Mottelson B R 1975 Nuclear Structure (Vol. II) (New York: Benjamin) p658
[90] Wolschin G 1979 Phys. Lett. B 88 35
[91] Xia C J, Sun B X, Zhao E G, Zhou S G 2011 Sci. China Phys. Mech. Astron. 54 s109
[92] Jackson J D 1956 Can. J. Phys. 34 767
[93] Möller P, Sierk A J, Ichikawa T, Sagawa H 2016 At. Data Nucl. Data Tables 109-110 1
[94] Toke J, Światecki W J 1981 Nucl. Phys. A 372 141
[95] Schmidt K H, Morawek W 1991 Rep. Prog. Phys. 54 949
[96] Ignatyuk A V, Istekov K K, Smirenkin G N 1979 Yad. Fiz. 29 875
[97] Zubov A S, Adamian G G, Antonenko N V 2009 Phys. Part. Nucl. 40 847
[98] Bhat M R 1991 Proceedings of an International Conference on Nuclear Data for Science and Technology Forschungszentrum Jülich, Fed. Rep. of Germany, May 13–17, 1991 p817
[99] Nishio K, Mitsuoka S, Nishinaka I, Makii H, Wakabayashi Y, Ikezoe H, Hirose K, Ohtsuki T, Aritomo Y, Hofmann S 2012 Phys. Rev. C 86 034608
[100] Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Shirokovsky I V, Tsyganov Y S, Gulbekian G G, Bogomolov S L, Gikal B N, Mezentsev A N, Iliev S, Subbotin V G, Sukhov A M, Voinov A A, Buklanov G V, Subotic K, Zagrebaev V I, Itkis M G, Patin J B, Moody K J, Wild J F, Stoyer M A, Stoyer N J, Shaughnessy D A, Kenneally J M, Wilk P A, Lougheed R W, Il’kaev R I, Vesnovskii S P 2004 Phys. Rev. C 70 064609
[101] Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Sagaidak R N, Shirokovsky I V, Tsyganov Y S, Voinov A A, Gulbekian G G, Bogomolov S L, Gikal B N, Mezentsev A N, Subbotin V G, Sukhov A M, Subotic K, Zagrebaev V I, Vostokin G K, Itkis M G, Henderson R A, Kenneally J M, Landrum J H, Moody K J, Shaughnessy D A, Stoyer M A, Stoyer N J, Wilk P A 2007 Phys. Rev. C 76 011601(R)
[102] Oganessian Y T, Abdullin F S, Dmitriev S N, Gostic J M, Hamilton J H, Henderson R A, Itkis M G, Moody K J, Polyakov A N, Ramayya A V, Roberto J B, Rykaczewski K P, Sagaidak R N, Shaughnessy D A, Shirokovsky I V, Stoyer M A, Stoyer N J, Subbotin V G, Sukhov A M, Tsyganov Y S, Utyonkov V K, Voinov A A, Vostokin G K 2013 Phys. Rev. C 87 014302
[103] Oganessian Y T, Abdullin F S, Alexander C, Binder J, Boll R A, Dmitriev S N, Ezold J, Felker K, Gostic J M, Grzywacz R K, Hamilton J H, Henderson R A, Itkis M G, Miernik K, Miller D, Moody K J, Polyakov A N, Ramayya A V, Roberto J B, Ryabinin M A, Rykaczewski K P, Sagaidak R N, Shaughnessy D A, Shirokovsky I V, Shumeiko M V, Stoyer M A, Stoyer N J, Subbotin V G, Sukhov A M, Tsyganov Y S, Utyonkov V K, Voinov A A, Vostokin G K 2013 Phys. Rev. C 87 054621
[104] Oganessian Y T, Utyonkov V K, Kovrizhnykh N D, Abdullin F S, Dmitriev S N, Ibadullayev D, Itkis M G, Kuznetsov D A, Petrushkin O V, Podshibiakin A V, Polyakov A N, Popeko A G, Sagaidak R N, Schlattauer L, Shirokovski I V, Shubin V D, Shumeiko M V, Solovyev D I, Tsyganov Y S, Voinov A A, Subbotin V G, Bodrov A Y, Sabel’nikov A V, Khalkin A V, Zlokazov V B, Rykaczewski K P, King T T, Roberto J B, Brewer N T, Grzywacz R K, Gan Z G, Zhang Z Y, Huang M H, Yang H B 2022 Phys. Rev. C 106 L031301
 
Metrics
- Abstract views: 86
 - PDF Downloads: 0
 - Cited By: 0
 


					
		        
	        
 
												






下载: