-
This study employs a multi-unit thermoradiative device (TRD) for automotive exhaust waste heat recovery. A coupled model integrating radiative heat transfer, current-voltage characteristics, and fluid heat exchange is established. Based on Fourier’s law of heat conduction and thermal radiative transfer theory, the energy constraint equations, total power output, and conversion efficiency of the system are derived. The variations of exhaust temperature, TRD operating temperature, and ambient temperature with unit number are obtained through numerical simulations, thereby revealing the regulation mechanisms of voltage and semiconductor bandgap on energy conversion performance. Results show that the temperatures of the exhaust gas and the hot side of the TRD decrease with increasing unit number and also decline with increasing current at the same unit position. In contrast, the cold side of the TRD and the ambient temperature rise due to heat accumulation and cascading heating effects, and further increase with higher current, reflecting the coupling between electrical output and thermal processes. Increased voltage suppresses radiative recombination, leading to reduced current, while the electrical power reaches a maximum at a specific operating point. The total heat flux is reduced as voltage increases. Due to the nonlinear relationship between electrical power and heat flux, the efficiency attains an optimum value at a certain voltage, achieving a balance between electrical output and heat dissipation. This study demonstrates that the locally optimal power reaches a global maximum of 170.45 W at a bandgap of 0.06 eV, while the locally optimal efficiency increases monotonically with bandgap before saturating gradually. To address the inherent trade-off between power and efficiency, a target function Z defined as the product of locally optimal power and efficiency is introduced. Numerical analysis reveals that Z attains its maximum value of 49.74 W at a bandgap of 0.105 eV, effectively balancing the competing objectives of power output and energy conversion efficiency. This approach offers a new pathway for performance optimization in thermoelectric systems.
-
Keywords:
- Thermoradiative devices /
- Waste heat recovery /
- Energy conversion /
- Semiconductor band-gap /
- electrical-thermal Coupling
-
[1] Wu X, Zhang D, Cai H, Zhou Y, Ni J, Zhang J 2015 Acta Phys. Sin. 64 096102 (in Chinese) [吴限量, 张德贤, 蔡宏琨, 周严, 倪牮, 张建军 2015 64 096102]
[2] Xiong J, Huang Z, Zhang H, Wang Q, Cui K 2024 Acta Phys. Sin. 73 144402 (in Chinese) [熊家骋, 黄哲群, 张恒, 王启祥, 崔可航 2024 73 144402]
[3] Strandberg R 2015 J. Appl. Phys. 117 055105
[4] Nielsen M P, Pusch A, Pearce P M, et al. 2024 Nature Photonics 18 1137–1146
[5] Santhanam P, Fan S 2016 Phys. Rev. B 13 161410
[6] Wu X H, Zhang J H, Zhang X 2025 Opto-Electron Eng 52(7) 250069 (in Chinese) [吴小虎,张纪红,张欣 2025 光电工程52(7) 250069]
[7] Lin C, Wang B, Teo K H, Zhang Z 2017 J. Appl. Phys. 122 243103
[8] Callahan W A, Feng D, Zhang Z M, Toberer E S, Ferguson A J, Tervo E J 2021 Phys. Rev. Appl. 15 054035
[9] Ono M, Santhanam P, Li W, Zhao B, Fan S 2019 Appl. Phys. Lett. 114 161102
[10] Fernández J J 2017 IEEE Trans. Electron Devices 64 250-255
[11] Feng D, Ruan X 2025 ACS Nano 19 17357−17364
[12] Zhang X, Li W 2025 Chinese Journal of Luminescence 46(6) 1129 (in Chinese) [张学志,李炜 2025 发光学报46(6) 1129]
[13] Harada Y, Nishii F, Kita T 2025 Scientific Reports 15(1) 7452
[14] Bohm P, Menon A K, Zhang Z M 2025 J. Appl. Phys. 137 225001
[15] https://www.nasa.gov/directorates/stmd/niac/niac-studies/radioisotope-thermoradiative-cell-power-generator-2/
[16] Zhang X, Li J, Xiong Y, Ang Y S 2022 Energy 258 124940
[17] Zhang X, Du J, Ang Y S, Chen J, Ang L K 2019 Energy Convers. Manage. 198 111842
[18] Bao Z, Huang Y, Chen X, Zou Y 2023 Int. J. Hydrogen Energy 48(81) 31708-31719
[19] Liao T, Dai Y, Cheng C, He Q, Li Z, Ni M 2021 Journal of Power Sources 512 230538
[20] Peng W, Li, Gonzalez-Ayala J 2025 Appl. Thermal Engineering 279 128049
[21] Wang Y, Dai C, Wang S 2013 Appl. Energy 112 1171-1180
[22] Luo D, Wang R, Yu W, et al. 2020 Appl. Energy 270 115181
[23] Liao T, Xiao J, Xu Y, Lin B 2021 Thermal Science and Engineering Progress 25 101040
[24] Yang Z M, Zhang Y C, Dong Q C, et al. 2018 Renew. Energy 121 28-35
[25] Zhang Z, Huang Y, Sun W. 2024 Appl. Thermal Engineering 236 121899
[26] Zhang X, Peng W, Lin J, Chen X, Chen J 2017 J. Appl. Phys. 122 174505
[27] Liao T, Zhang X, Chen X, et al. 2017 Opt. Lett. 42(16) 3236
[28] Liao T J, Han D B, Yang Z M 2025 Acta Optica Sinica 45(11) 1125002 (in Chinese) [廖天军, 韩冬冰, 杨智敏 2025 光学学报45(11) 1125002]
[29] Liao T, Lü Y, 2020 Acta Phys. Sin. 69 057202 (in Chinese) [廖天军, 吕贻祥 2020 69 057202]
[30] Liao T, Yang Z, Chen X, et al. 2019 IEEE Trans. Electron Devices 66(3) 1386-1389
[31] Abbasi H R, Yavarinasab A, Roohbakhsh S 2021 Journal of CO2 Utilization 51 101630
[32] Zhang X, Wang S, Chen H 2006 Turbine Technology 48(3) 179−180 (in Chinese) [张学镭, 王松岭, 陈海平 2006 汽轮机技术48(3) 179−180]
[33] Liang J, Wang J, Tan J L, Li H X, Liu Y, Xia S T 2019 Journal of Remote Sensing, 23(3) 476–486 (in Chinese) [梁继, 王建, 谭俊磊, 李红星, 刘艳, 夏诗婷 2019遥感学报 23(3) 476–486]
[34] He Xinxin, Pei D, Chen H, et al. 2021 Thermal Power Generation 50(5) 27-33 (in Chinese) [何欣欣, 裴东升, 陈会勇, 等. 2021 热力发电50(5) 27-33]
[35] Yuan Z, Gu Z, He Y, et al. 2010 Journal of System Simulation 22(8) 1832-1836 (in Chinese) [袁志群, 谷正气, 何忆斌, 等. 2010系统仿真学报22(8) 1832-1836]
[36] Vurgaftman I, Meyer J R 2023 APL Energy 1(3) 036111
Metrics
- Abstract views: 12
- PDF Downloads: 0
- Cited By: 0









下载: