Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on the measurement and application of SLEGS gamma activation analysis

YANG Yuxuan ZHANG Yue SUN Qiankun LI Zhicai WANG Hongwei FAN Gongtao ZHAO Weijuan HAO Zirui LIU Longxiang XU Hanghua JIAO Pu JIN Sheng CHEN Kaijie WANG Zhenwei ZHOU Mengdie XU Mengke WANG Xiangfei SHEN Yulong DING Jiawen

Citation:

Research on the measurement and application of SLEGS gamma activation analysis

YANG Yuxuan, ZHANG Yue, SUN Qiankun, LI Zhicai, WANG Hongwei, FAN Gongtao, ZHAO Weijuan, HAO Zirui, LIU Longxiang, XU Hanghua, JIAO Pu, JIN Sheng, CHEN Kaijie, WANG Zhenwei, ZHOU Mengdie, XU Mengke, WANG Xiangfei, SHEN Yulong, DING Jiawen
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Gamma activation analysis (GAA) represents a powerful elemental analysis technique, particularly suitable for light elements and those insensitive to thermal neutron activation. The establishment of the Shanghai Laser Electron Gamma Source (SLEGS) beamline has provided a unique platform in China for conducting advanced gamma activation studies using quasi-monochromatic gamma beams and obtaining high-precision nuclear data. This paper systematically presents the gamma activation data measurement methodology and experimental setup developed at the SLEGS beamline, while demonstrating its specific applications and significant achievements in beam diagnostics and nuclear astrophysics research. As is shown in the overall workflow in Fig. 10.The study was conducted at the SLEGS beamline. SLEGS generates tunable quasi-monochromatic gamma beams in the energy range of 0.66–21.7 MeV through inverse Compton scattering mode between a 3.5 GeV electron beam and a 10.64 μm CO2 laser (see experimental layout in Figure 1). The experimental procedure began with the online irradiation of target samples (e.g., natural abundance Au, Zn and Ru/Ga) to produce radioactive nuclei via photonuclear reactions. During irradiation, beam monitoring was conducted using LaBr3(Ce) or BGO detectors alongside spectral unfolding. Subsequently, offline γ-ray spectroscopy was performed on the activated samples using shielded HPGe detectors. Based on these measurements, the reaction cross-sections were ultimately determined by analyzing characteristic gamma peaks in conjunction with beam parameters and detector efficiency data.Absolute calibration of SLEGS gamma beam intensity was successfully achieved using 197Au(γ, n)196Au and 64Zn(γ, n)63Zn reactions. The measured results agreed with online monitor data and Geant4 simulations within 10% uncertainty (Figure 6), validating activation as a reliable beam diagnostic tool. Key photonuclear reaction cross-sections relevant to p-process nucleosynthesis were measured. Using natural abundance Ru targets, preliminary quasi-monoenergetic cross-section data were obtained for 96Ru(γ, n)95Ru, 96Ru(γ, p)95Tc and 98Ru(γ, n)97Ru reactions (Figures 8(a), 8(b)). Systematic measurements of the 69Ga(γ, n)68Ga monoenergetic reaction cross-section were performed (Figures 8(c), 8(d)). The experimental data constrained parameters in the TALYS nuclear reaction model, enabling calculation of 69Ga(γ, n), (γ, p), and (γ, α) reaction rates over 1.5$\sim$10 GK temperature range (Figure 9). REACLIB-format parameters were derived for astrophysical network calculations. These experimental results provide crucial constraints for understanding the origin of p-nuclei.The study has successfully established a comprehensive and reliable gamma activation data acquisition and analysis platform at the SLEGS beamline of Shanghai Synchrotron Radiation Facility. Experimental results demonstrate that this platform can not only precisely calibrate gamma beam parameters but also conduct frontier fundamental research in nuclear astrophysics, particularly for measuring critical yet challenging p-process photonuclear reaction cross-sections. The obtained datasets hold significant importance for nuclear databases and astrophysical models. Looking forward, the SLEGS gamma activation platform will expand its applications to broader fields including characteristic nuclide identification, archaeometry, materials science, and medical isotope production.Low-background gamma data and partial gamma activation data were provided, which can be accessed in the dataset at: https://www.scidb.cn/s/RVRjEz.
  • 图 1  SLEGS束线站伽马活化实验布局示意图

    Figure 1.  Schematic diagram of the SLEGS beamline and gamma activation Experimental layout.

    图 2  SLEGS伽马活化离线测量布局示意图

    Figure 2.  Schematic diagram of the offline activation layout at the SLEGS beamline.

    图 3  (a)SLEGS的束流时间分布谱与(b)伽马活化时间谱示意图

    Figure 3.  (a)Schematic diagram of the beam time distribution spectrum and (b)gamma activation time spectrum of SLEGS

    图 4  低本底屏蔽后测量天然本底能谱图(93小时)

    Figure 4.  Natural background energy spectra after shielding (93 h)

    图 5  (a) LaBr3(Ce)探测器测量伽马束能谱(黑实线)、LCS伽马能谱(红实线)与轫致辐射(Brem)伽马能谱(蓝实线); (b) 实测能谱(蓝实线)与蒙特卡洛重建谱(红虚线)、解谱得到的入射伽马能谱(绿实线)

    Figure 5.  (a) The measured gamma beam spectrum by the LaBr3(Ce) detector(black solid line), LCS gamma spectrum component(red solid line); Bremsstrahlung(Brem)gamma spectrum(blue solid line). (b) Measured spectrum (blue solid line), Monte Carlo reconstruction (red dashed line); Unfolded true γ-ray spectrum(green solid line).

    图 6  $ ^{197} {\rm{Au}}$、$ ^{64} {\rm{Zn}}$活化测量与LaBr3(Ce)直接测量、Geant4模拟流强结果对比

    Figure 6.  Comparison of γ-ray beam flux results obtained from the $ ^{197} {\rm{Au}}$, $ ^{64} {\rm{Zn}}$ direct detection using LaBr3(Ce) scintillators, and Geant4 simulation results

    图 7  靶核基态伽莫夫窗口 (a) $ ^{96} {\rm{Ru}}$(γ, n), (b) $ ^{96} {\rm{Ru}}$(γ, p)

    Figure 7.  Gamow window on the ground state of target nucleus (a) $ ^{96} {\rm{Ru}}$(γ, n), (b) $ ^{96} {\rm{Ru}}$ (γ, p)

    图 8  核天体物理相关的活化截面测量 (a, b) $ ^{Nat} {\rm{Ru}}$与(c, d) $ ^{Nat} {\rm{Ga}}$

    Figure 8.  Activation cross section measurement of $ ^{Nat} {\rm{Ru}}$ (a, b) and $ ^{Nat} {\rm{Ga}}$ (c, d) in nuclear astrophysics

    图 9  $ ^{69} {\rm{Ga}}$的核天体反应率

    Figure 9.  Astrophysical reaction rates of $ ^{69} {\rm{Ga}}$

    表 1  SSRF和SLEGS目前运行参数

    Table 1.  Operation parameters of SSRF and SLEGS

    Parameter Value Description
    E-beam configuration
    (ns/Bunch)
    2 SSRF
    E-beam energy (GeV) 3.5 SSRF
    E-beam current (mA) 180—210 Topup Mode
    CO2 Laser (μm) 10.64 Continue Mode
    Laser pulse width (μs) 50/950 On/Off
    Laser Power (W) 1—140 100 W, Average 5 W
    γ beam energy (MeV) 0.66—21.1, 21.7 20—160°, 180°
    γ beam spot (mm) 1—25 Selected by Collimator
    Energy Resolution 5—15% Resolution With Fine Collimator
    Total flux (γ/s) 4.8$ \times $$10 ^5 $—1.0$ \times $$10 ^7 $, 1.5$ \times $$10 ^7 $ 20—160°, 180°
    DownLoad: CSV

    表 2  ORTEC p型同轴高纯锗探测器参数

    Table 2.  ORTEC p-type coaxial high-purity germanium detector parameters

    ORTEC GEM-50195-P GEM-70200-P
    晶体直径(mm) 67.1 69.6
    晶体长度(mm) 65.5 90.1
    晶体死层(μm) 700 700
    铝窗厚度(mm) 1.0 1.0
    推荐高压(V) +2200 +2500
    出厂分辨 1.69 keV@1.33 MeV
    (0.13%)
    1.85 keV@1.33 MeV
    (0.14%)
    目前分辨 4.53 keV@1.33 MeV
    (0.34%)
    3.59 keV@1.33 MeV
    (0.27%)
    探测效率 55.2%@1.33 MeV 74.2%@1.33 MeV
    冷凝制冷 ${\rm{M}} \ddot{o} {\rm{bius}}$ LN-2
    DownLoad: CSV

    表 3  反应$ ^{69} {\rm{Ga}}$(γ, n)$ ^{68} {\rm{Ga}}$, $ ^{69} {\rm{Ga}}$(γ, p)$ ^{68} {\rm{Zn}}$及$ ^{69} {\rm{Ga}}$(γ, α)$ ^{65} {\rm{Cu}}$推荐的REACLIB参数

    Table 3.  Recommended REACLIB parameters for $ ^{69} {\rm{Ga}}$(γ, n)$ ^{68} {\rm{Ga}}$, $ ^{69} {\rm{Ga}}$(γ, p)$ ^{68} {\rm{Zn}}$ and $ ^{69} {\rm{Ga}}$(γ, α)$ ^{65} {\rm{Cu}}$

    Reaction $ a_0 $ $ a_1 $ $ a_2 $ $ a_3 $ $ a_4 $ $ a_5 $ $ a_6 $ 拟合误差
    (γ, n) 100.0 $ -100.0 $ $ -100.0 $ 24.17343 $ -8.81476 $ 0.86009 $ -6.64832 $ 9.07%
    (γ, p) $ -99.9999995 $ $ -95.31730 $ 47.22335 99.99999997 $ -8.88088 $ 0.44241 $ -13.29059 $ 0.00
    (γ, α) $ -100.0 $ $ -87.00958 $ 34.26290 100.0 $ -11.21949 $ 0.70231 $ -7.09431 $ 0.10%
    DownLoad: CSV
    Baidu
  • [1]

    Segebade C, Berger A 2008 Photon Activation Analysis (Encyclopedia of Analytical Chemistry R.A. Meyers (Ed.)

    [2]

    Segebade C, Starovoitova V N, Borgwardt T, Wells D 2017 J Radioanal Nucl Chem 312 443Google Scholar

    [3]

    Gaudin A M, Pannell J H Anal. Chem. 23 1261

    [4]

    Erhard M A 2013 Photoaktivierung des p-Kerns 92Mo am Bremsstrahlungsmessplatz von ELBE. Ph.D. Dissertation, Dresden, Techn. Univ., Diss., 2010

    [5]

    Avino P, Capannes G, Lopez F, Rosada, A 2013 Sci. World J. 458793 1

    [6]

    Tai R Z, Zhao Z T 2022 J. Phys.: Conf. Ser. 2380 012004Google Scholar

    [7]

    Tai R Z, Zhao Z T 2024 Nucl. Sci. Tech. 35 137Google Scholar

    [8]

    王宏伟, 范功涛, 刘龙祥, 曹喜光, 李薇, 张岳, 胡新荣, 李鑫祥, 王俊文, 鲁同所, 黄勃松, 郝子锐, 匡攀, 黄玉华 2020 原子核物理评论 37 53

    Wang H W, Fan G T, Liu L X, Cao X G, Li W, Zhang Y, Hu X R, Li X X, Wang J W, Lu T S, Huang B S, Hao Z R, Kuang P, Huang Y H 2020 Nucl. Phys. Rev. 37 53

    [9]

    Wang H W, Fan G T, Liu L X, Xu H H, Shen W Q, Ma Y G, Utsunomiya H, Song L L, Cao X G, Hao Z R, Chen K J, Jin S, Yang Y X, Hu X R, Li X X, Kuang P 2022 Nucl. Sci. Tech. 33 87Google Scholar

    [10]

    Liu L X, Wang H W, Fan G T, Xu H H, Zhang Y, Hao Z R, Li A G 2024 Nucl. Sci. Tech. 35 111Google Scholar

    [11]

    Hao Z R, Fan G T, Wang H W, Liu L X, Xu H H, Utsunomiya H, Cao X G, Xu B J, Song L L, Hu X R, Li X X, Yang Y X, Kuang P 2021 Nucl. Instrum. Methods Phys. Res. A 1013 165638Google Scholar

    [12]

    Z-R H, G-T F, H-W W, H-H X, L-X L, L-L S, X-R H, X-X L, P K, S J 2022 Nucl. Instrum. Methods Phys. Res. B 519 9Google Scholar

    [13]

    Xu H H, Fan G T, Wang H W, Utsunomiya H, Liu L X, Hao Z R, Wu H L, Song L L, Zhang Q L, Jiang B C, Hu X R, Li X X, Kuang P, Yang Y X, Jin S 2022 Nucl. Instrum. Methods Phys. Res. A 1033 166742Google Scholar

    [14]

    杨宇萱, 张岳, 赵维娟, 王宏伟, 范功涛, 许杭华, 刘龙祥, 郝子锐, 李志才, 金晟, 陈开杰, 焦普, 周梦蝶, 王振伟 2024 原子核物理评论 41 433

    YANG Y X, ZHANG Y, ZHAO W J, WANG H W, FAN G T, XU H H, LIU L X, HAO Z R, LI Z C, JIN S, CHEN K J, JIAO P, ZHOU M D, WANG Z W 2024 Nucl. Phys. Rev. 41 433

    [15]

    YANG Y X, ZHANG Y, LI Z C, HAO Z R, JIN S, CHEN K J, WANG Z W, SUN Q K, FAN G T, XU H H, LIU L X, ZHAO W J, WANG H W 2025 Nucl. Sci. Tech. 36 80Google Scholar

    [16]

    Li Z C, Yang Y, Cao Z W, Li X X, Yuan Y, Zhao Z Q, Fan G T, Wang H W, Luo W 2023 Nucl. Sci. Tech. 34 170Google Scholar

    [17]

    Li Z C, Yang Y X, Luo W, Fan G T, Wang H W, Liu L X, Hao Z R, Xu H H, Li X X, Yuan Y, Zhang Y, Jin S, Chen K J, Jiao P, Zhou M D, Wang Z W, Sun Q K, Ye S, Xu R R, He C Y 2025 Nucl. Instr. and Meth. B 559 165595Google Scholar

    [18]

    张昊, 张立勇, 何建军, 马余刚 2025 中国科学: 物理学力学天文学 55 250005

    Zhang H, Zhang L Y, He J J, Ma Y G 2025 Sci. Sin. Phys. Mech. Astron. 55 250005

    [19]

    Pang X, Sun B H, Zhu L H, Lu G H, Zhou H B, Yang D 2023 Nucl. Sci. Tech. 34 187Google Scholar

    [20]

    Yang Y X, Zhao W J, Cao X G, Wang H W, Fan G T, Liu L X, Xu H H, Hu X R, Li X X, Hao Z R, Jin S, Chen K J, Ma Y G 2024 Radiat. Phys. Chem. 218 111599Google Scholar

    [21]

    Sun Z J 2018 Nucl. Sci. Tech. 29 155Google Scholar

    [22]

    Liu L X, Utsunomiya H, Fan G T, Xu H H, Wang H W, Hao Z R, Zhang Y, He C Y, Jiao P, Ye S, Jin S, Chen K J, Yang Y X, Sun Q K, Wang Z W, Li Z C, Zhou M D, Lu X, Yang C, Lu F, Cao X G 2024 Nucl. Instrum. Methods Phys. Res., A 1063 169314Google Scholar

    [23]

    Hao Z R, Fan G T, Wang H W, Liu L X, Xu H H, Zhang Y, Yang Y X, Jin S, Chen K J, Li Z C, Jiao P, Sun Q K, Zhou M D, Ye S, Wang Z W, Shen W Q, Ma Y G 2025 Sci. Bull. 70 2591Google Scholar

    [24]

    Arnould M, Goriely S 2003 Phys. Rep. 384 1Google Scholar

    [25]

    Rayet M, Arnould M, Hashimoto M, Prantzos N, Nomoto K 1995 Astron. Astrophys. 298 517

    [26]

    Travaglio C, R?pke F, Gallino R, Hillebrandt W 2011 Astrophys. J. 739 93Google Scholar

    [27]

    Dietrich S S, Berman B L 1988 At. Data Nucl. Data Tables 38 199Google Scholar

    [28]

    Vogt K, Mohr P, Babilon M, Bayer W, Galaviz D, Hartmann T, Hutter C, Rauscher T, Sonnabend K, Volz S, Zilges A 2002 Nucl. Phys. A 707 241Google Scholar

    [29]

    Goko S, Utsunomiya H, Goriely S, Makinaga A, Kaihori T, Hohara S, Akimune H, Yamagata T, Lui Y W, Toyokawa H, Koning A J, Hilaire S 2006 Phys. Rev. Lett. 96 192501Google Scholar

    [30]

    Koning A, Hilaire S, Goriely S 2023 Eur. Phys. J. A 59 131Google Scholar

    [31]

    Rauscher T, Thielemann F K 2000 At. Data Nucl. Data Tables 75 1Google Scholar

    [32]

    Reimers P, Lutz G J, Segebade C 1977 J. Radioanal. Chem. 39 93Google Scholar

    [33]

    Borgwardt T C 2018 Proceedings: 1 st International Electronic Conference on Geosciences, (IECG 2018) 564 1

    [34]

    Sun Z J, Wells D P, Segebade C, Maschner H, Benson B 2013 J Radioanal Nucl Chem 296 293Google Scholar

    [35]

    Sun Z J, Okafor K, Isa S 2017 Appl. Radiat. Isot. 127 173Google Scholar

    [36]

    孙远明, 许旭, 唐婉月, 常艺, 陆景彬, 赵龙, 刘玉敏 2019 68 1082801

    Sun Y M, Xu X, Tang W Y, Chang Y, Lu J B, Zhao L, Liu Y M 2019 Acta Phys. Sin 68 1082801

    [37]

    Sun X J, Zhou F Q, Song Y L, Li Y, Ji P F, Chang X Y 2019 Chin. Phys. Lett. 36 112501Google Scholar

    [38]

    贺书凯, 齐伟, 矫金龙, 董克攻, 邓志刚, 滕建, 张博, 张智猛, 洪伟, 张辉, 沈百飞, 谷渝秋 2018 67 225202Google Scholar

    He S K, Qi W, Jiao J L, Dong K G, Deng Z G, Teng J, Zhang B, Zhang Z M, Hong W, Zhang H, Shen B F, Gu Y Q 2018 Acta Phys. Sin. 67 225202Google Scholar

    [39]

    Li Z C, Hao Z R, Sun Q K, Shen Y L, Liu L X, Xu H H, Zhang Y, Jiao P, Zhou M D, Yang Y X, Jin S, Chen K J, Wang Z W, Ye S, Li X X, Ma C W, Wang H W, Fan G T, Luo W 2025 Nucl. Sci. Tech. 36 34Google Scholar

    [40]

    Zhou M D, Hao Z R, Sun Q K, Liu L X, Xu H H, Zhang Y, Jiao P, Li Z C, Luo W, Yang Y X, Jin S, Chen K J, Ye S, Wang Z W, Wang Y T, Wei H L, Fu Y, Yu K, Wang H W, Fan G T, Ma C W 2025 Phys. Rev. C 111 054612Google Scholar

    [41]

    Jiao P, Hao Z R, Sun Q K, Liu L X, Xu H H, Zhang Y, Zhou M D, Li Z C, Luo W, Yang Y X, Jin S, Chen K J, Ye S, Wang Z W, Wang Y T, Wei H L, Fu Y, Yu K, Wang H W, Fan G T, Ma C W 2025 Nucl. Sci. Tech. 36 66Google Scholar

    [42]

    匡攀, 宋龙龙, 陈开杰, 王宏伟, 刘龙祥, 范功涛, 许杭华, 胡新荣, 李鑫祥, 郝子锐, 杨宇萱, 金晟 2023 原子核物理评论 40 2022040

    Pan K, Long-Long S, Kai-Jie C, Hong-Wei W, Long-Xiang L, Gong-Tao F, Hang-Hua X, Xin-Rong H, Xin-Xiang L, Zi-Rui H, Yu-Xuan Y, Sheng J 2023 Nucl. Phys. Rev. 40 2022040

    [43]

    郝子锐, 范功涛, 刘龙祥, 王宏伟, 张岳, 胡新荣, 李鑫祥, 王俊文, 匡攀, 戈松雨 2020 核技术 43 110501

    Hao Z R, Fan G T, Liu L X, Wang H W, Zhang Y, Hu X R, Li X X, Wang J W, Kuang P, Ge S Y 2020 Nucl. Tech. 43 110501

    [44]

    Hao Z R, Liu L X, Zhang Y, Wang H W, Fan G T, Xu H H, Jin S, Yang Y X, Li Z C, Jiao P, Chen K J, Sun Q K, Wang Z W, Zhou M D, Ye S, Xu M K, Wang X F, Shen Y L 2025 Nucl. Sci. Tech. 36 183Google Scholar

    [45]

    Chen K J, Liu L X, Hao Z R, Ma Y G, Wang H W, Fan G T, Cao X G, Xu H H, Niu Y F, Li X X, Hu X R, Yang Y X, Jin S, Kuang P 2023 Nucl. Sci. Tech. 34 47Google Scholar

    [46]

    Jin S, Hao Z R, Liu L X, Chen K J, Yang Y X, Xu H H, Zhang Y, Sun Q K, Wang Z W, Fan G T, Wang H W 2025 Nucl. Sci. Tech. 34 78

    [47]

    Liu P, Zhang H Y, Wu X F, Xu R R, Tao X, Tian Y, Jin Y L, Wang J M, Zhang Z, Ge Z G, Shu N C 2024 Ann. Nucl. Energy 208 110745Google Scholar

    [48]

    谢金辰, 陶曦, 续瑞瑞, 田源, 邢康, 葛智刚, 牛一斐 2025 74 082501Google Scholar

    Xie J C, Tao X, Xu R R, Tian Y, Xing K, Ge Z G, Niu Y F 2025 Acta Phys. Sin. 74 082501Google Scholar

    [49]

    Mirani F, Calzolari D, Formenti A, Passoni M 2021 4 185

  • [1] TAO Mengmeng, CHEN Hongwei, WANG Yamin, WANG Ke, SHAO Chongyun, LI Zhe, LI Sheng-Wu, LI Qiaomu, YE Jingfeng. Response Characteristics of Yb-doped Fiber Lasers to Gamma-ray Radiation. Acta Physica Sinica, doi: 10.7498/aps.75.20251265
    [2] WANG Chunjie, GUAN Qingdi, JIANG Wengang, YU Qingjiang, XIE Feng, YU Gongshuo, LIANG Jianfeng, LI Xuesong, XU Jiang. Influence of event sequence reconstruction on imaging resolution of Compton camera. Acta Physica Sinica, doi: 10.7498/aps.74.20241723
    [3] QIU Yuanyuan, YANG Yujun, GUO Yingchun, WEI Zhiyi, WANG Bingbing. Study of single-photon Compton scattering process of bound electrons in intense laser fields by using frequency-domain theory. Acta Physica Sinica, doi: 10.7498/aps.74.20250483
    [4] XIE Jinchen, TAO Xi, XU Ruirui, TIAN Yuan, XING Kang, GE Zhigang, NIU Yifei. Outliers identification of experimental (γ, n) reaction cross section via variational autoencoder. Acta Physica Sinica, doi: 10.7498/aps.74.20241775
    [5] TIAN Ronghe, YANG Dong, YU Weixiang, HUANG Xiaolong, LI Xiaoan, SHI Mingsong. Decay data of radionuclide 56Co for high-energy gamma efficiency calibration of detectors. Acta Physica Sinica, doi: 10.7498/aps.74.20250743
    [6] Xiao Shi-Liang, Wang Zhao-Hui, Wu Hong-Yi, Chen Xiong-Jun, Sun Qi, Tan Bo-Yu, Wang Hao, Qi Fu-Gang. Spectral analysis techniques in measuring neutron-induced gamma production cross-section. Acta Physica Sinica, doi: 10.7498/aps.73.20231980
    [7] Dong Xu, Huang Yong-Sheng, Tang Guang-Yi, Chen Shan-Hong, Si Mei-Yu, Zhang Jian-Yong. Circular electron-positron collider beam energy measurement scheme based on microwave-electronic Compton backscattering. Acta Physica Sinica, doi: 10.7498/aps.70.20202081
    [8] Zhu Xing-Long, Wang Wei-Min, Yu Tong-Pu, He Feng, Chen Min, Weng Su-Ming, Chen Li-Ming, Li Yu-Tong, Sheng Zheng-Ming, Zhang Jie. Research progress of ultrabright γ-ray radiation and electron-positron pair production driven by extremely intense laser fields. Acta Physica Sinica, doi: 10.7498/aps.70.20202224
    [9] Song Zhang-Yong, Yu De-Yang, Cai Xiao-Hong. Analysis and simultion for Compton camera′s imaging resolution. Acta Physica Sinica, doi: 10.7498/aps.68.20182245
    [10] Jia Qing-Gang, Zhang Tian-Kui, Xu Hai-Bo. Optimization design of a Gamma-to-electron spectrometer for high energy gammas induced by fusion. Acta Physica Sinica, doi: 10.7498/aps.66.010703
    [11] Ma Yong-Peng, Zhao Xiao-Li, Liu Ya-Wei, Xu Long-Quan, Kang Xu, Yang Ke, Yan Shuai, Zhu Lin-Fan. Investigation of Compton profiles of NO and C2H2. Acta Physica Sinica, doi: 10.7498/aps.64.153302
    [12] Gu Yu-Fei, Yan Bin, Li Lei, Wei Feng, Han Yu, Chen Jian. Image reconstruction based on total variation minimization and alternating direction method for Compton scatter tomography. Acta Physica Sinica, doi: 10.7498/aps.63.018701
    [13] Liu Yu-An, Zhuang Yi-Qi, Du Lei, Su Ya-Hui. 1/f noise characterization gamma irradiation of GaN-based blue light-emitting diode. Acta Physica Sinica, doi: 10.7498/aps.62.140703
    [14] Yang Yi-Wei, Liu Rong, Yan Xiao-Song. Thorium capture ratio determination through γ-ray off-line method. Acta Physica Sinica, doi: 10.7498/aps.62.032801
    [15] Deng Jiao-Jiao, Liu Bo, Gu Mu, Liu Xiao-Lin, Huang Shi-Ming, Ni Chen. First principles calculation of electronic structures and optical properties for -CuX(X = Cl, Br, I). Acta Physica Sinica, doi: 10.7498/aps.61.036105
    [16] Ge Yu-Cheng. Physical properties of laser-electron Compton scattering. Acta Physica Sinica, doi: 10.7498/aps.58.3094
    [17] Xia Liang-Bin, Ouyang Xiao-Ping, Wang Qun-Shu, Kang Ke-Jun, He Xiao-Ling, Gu Mu. Lead-tin-fluorophosphates scintillating glass doped with stilbene 420 excited by gamma ray. Acta Physica Sinica, doi: 10.7498/aps.58.882
    [18] Zhang Wei-Jia, Wang Tian-Min. Study of Madelung constants of complex ionic crystals. Acta Physica Sinica, doi: 10.7498/aps.54.565
    [19] . Acta Physica Sinica, doi: 10.7498/aps.21.1927
    [20] HSU YUNG-CHANG, CHENG LIN-SHENG. COINCIDENCES CAUSED BY COMPTON BACKSCATTERING OF GAMMA-RAYS. Acta Physica Sinica, doi: 10.7498/aps.14.114
Metrics
  • Abstract views:  181
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Received Date:  04 September 2025
  • Accepted Date:  20 October 2025
  • Available Online:  03 December 2025
  • /

    返回文章
    返回
    Baidu
    map