-
Metal-organic chemical vapor deposition (MOCVD) remains the dominant technique for the growth of III-nitride semiconductors; however, the complex growth kinetics and defect formation mechanisms continue to limit the achievable material quality and device performance. In recent years, the rapid advancement of in situ X-ray characterization techniques—particularly those enabled by high-brightness synchrotron radiation—has provided unprecedented opportunities for probing real-time structural evolution during nitride epitaxy. This review summarizes the latest international progress in in situ X-ray studies of III-nitride MOCVD growth, with emphasis on the development of in situ MOCVD growth platforms, emerging X-ray methodologies, and their applications in monitoring surface and interfacial dynamics.
We present the principles and implementation of in situ X-ray reflectivity (XRR), crystal truncation rods (CTR), grazing-incidence diffraction, and microbeam/coherent scattering techniques(XPCS) in nitride epitaxy. Using representative case studies from GaN and InGaN, we discuss how these tools reveal key dynamical processes—including early-stage nucleation, strain relaxation, step-flow behavior, alloy segregation, and interface roughening—under realistic growth conditions. Special attention is given to transient non-equilibrium phenomena such as compositional fluctuations and interface reconstruction in high-In content alloys, which remain inaccessible to conventional in situ probes.
Furthermore, we highlight emerging trends enabled by next-generation synchrotron sources, including millisecond- to microsecond-resolved measurements, nanoscale spatial mapping, and in situ coherent X-ray diffraction imaging (CXDI/XPCS). These capabilities are expected to provide direct atomic-to-mesoscale insights into island nucleation, step dynamics, defect evolution, and strain-composition coupling in complex heterostructures. Finally, we outline future research directions, such as integrating data-driven structure inversion, multi-scale modeling, and closed-loop “growth-measurement-feedback” control to accelerate the understanding and optimization of nitride epitaxy.
This review demonstrates that in situ X-ray techniques have become a powerful and indispensable bridge between microscopic structural evolution and macroscopic device performance, and will play a key role in enabling precise, controllable epitaxy of next-generation wide-bandgap semiconductor materials.-
Keywords:
- Epitaxial growth by MOCVD /
- In situ X-ray characterization /
- growth kinetics of Surface and interface /
- Synchrotron radiation X-rays
-
[1] Ju G, Xu D, Highland M J, Thompson C, Zhou H, Eastman J A, Fuoss P H, Zapol P, Kim H, Stephenson G B 2019 Nat. Phys. 15 589
[2] Pierce M, Chang K, Hennessy D, Komanicky V, Sprung M, Sandy A, You H 2009 Phys. Rev. Lett. 103 165501
[3] Hruszkewycz S, Holt M, Murray C E, Bruley J, Holt J, Tripathi A, Shpyrko O, McNulty I, Highland M, Fuoss P 2012 Nano Lett. 12 5148
[4] Fenter P, Park C, Zhang Z, Wang S 2006 Nat. Phys. 2 700
[5] Liu Y, Chen Z, Hu S, Peng H, Cheng Q, Raghothamachar B, Dudley M 2022 J. Cryst. Growth 583 126559
[6] Fuoss P, Brennan S 1990 Annu. Rev. Mater. Sci. 20 365
[7] Ju G, Xu D, Thompson C, Highland M J, Eastman J A, Walkosz W, Zapol P, Stephenson G B 2021 Nat. Commun. 12 1721
[8] Stephenson G B, Eastman J A, Auciello O, Munkholm A, Thompson C, Fuoss P H, Fini P, DenBaars S P, Speck J S 1999 MRS Bull. 24 21
[9] Liu R, Ulbrandt J G, Hsing H C, Gura A, Bein B, Sun A, Pan C, Bertino G, Lai A, Cheng K, et al. 2020 Nat. Commun. 11 2630
[10] Cao C, Shyam B, Wang J, Toney M F, Steinruck H G 2019 Acc. Chem. Res. 52 2673
[11] Jain R, Techert S 2016 Protein Pept. Lett. 23 242
[12] Jiang F, Wang R V, Munkholm A, Streiffer S, Stephenson G, Fuoss P, Latifi K, Thompson C 2006 Appl. Phys. Lett. 89 161915
[13] Iida D, Kondo Y, Sowa M, Sugiyama T, Iwaya M, Takeuchi T, Kamiyama S, Akasaki I 2013 Phys. Status Solidi (RRL) 7 211
[14] Takeda Y, Ninoi K, Ju G, Kamiya H, Mizuno T, Fuchi S, Tabuchi M 2011 IOP Conf. Ser.: Mater. Sci. Eng. 24 012002
[15] Headrick R, Kycia S, Woll A, Brock J, Murty M R 1998 Phys. Rev. B 58 4818
[16] Woll A, Headrick R, Kycia S, Brock J 1999 Phys. Rev. Lett. 83 4349
[17] Sasaki T, Ishikawa F, Yamaguchi T, Takahasi M 2016 Jpn. J. Appl. Phys. 55 05FB05
[18] Kang H, Seo S, Noh D 2001 J. Mater. Res. 16 1814
[19] Ju G, Fuchi S, Tabuchi M, Takeda Y 2013 J. Cryst. Growth 370 36
[20] Ju G, Fuchi S, Tabuchi M, Takeda Y 2013 Jpn. J. Appl. Phys. 52 08JB12
[21] Ju G, Fuchi S, Tabuchi M, Takeda Y 2013 J. Appl. Phys. 114 124906
[22] Richard M I, Highland M, Fister T, Munkholm A, Mei J, Streiffer S, Thompson C, Fuoss P, Stephenson G 2010 Appl. Phys. Lett. 96 051911
[23] Ulbrandt J G, Rainville M G, Wagenbach C, Narayanan S, Sandy A R, Zhou H, Ludwig Jr K F, Headrick R L 2016 Nat. Phys. 12 794
[24] Ju G, Tabuchi M, Takeda Y, Amano H 2017 Appl. Phys. Lett. 110 262105
[25] Ju G, Highland M J, Yanguas-Gil A, Thompson C, Eastman J A, Zhou H, Brennan S M, Stephenson G B, Fuoss P H 2017 Rev. Sci. Instrum. 88 035113
[26] Amano H 2016 Prog. Cryst. Growth Charact. Mater. 62 126
[27] Ju G, Ninoi K, Kamiya H, Fuchi S, Tabuchi M, Takeda Y 2011 J. Cryst. Growth 318 1143
[28] Ninoi K, Ju G X, Kamiya H, Fuchi S, Tabuchi M, Takeda Y 2011 J. Cryst. Growth 318 1139
[29] Ju G, Highland M J, Yanguas-Gil A, Thompson C, Eastman J A, Zhou H, Brennan S M, Stephenson G B, Fuoss P H 2017 Rev. Sci. Instrum. 88 035113
[30] Petach T A, Mehta A, Toney M F, Goldhaber-Gordon D 2017 Phys. Rev. B 95 184104
[31] Eng P J, Trainor T P, Brown Jr G E, Waychunas G A, Newville M, Sutton S R, Rivers M L 2000 Science 288 1029
[32] Ju G, Xu D, Thompson C, Highland M J, Eastman J A, Walkosz W, Zapol P, Stephenson G B 2021 Phys. Rev. B 103 125402
[33] Wang J, Lin Q, Xu E, Shen B, Ju G 2025 Phys. Status Solidi B 2500177
[34] Neave J, Joyce B, Dobson P, Norton N 1983 Appl. Phys. A 31 1
[35] Lewis B, Lee T, Grunthaner F, Madhukar A, Fernandez R, Maserjian J 1984 J. Vac. Sci. Technol. B 2 419
[36] Perret E, Xu D, Highland M, Stephenson G, Zapol P, Fuoss P, Munkholm A, Thompson C 2017 Appl. Phys. Lett. 111 232102
[37] Stephenson G B, Robert A, Grübel G 2009 Nat. Mater. 8 702
[38] Ju G, Fuchi S, Tabuchi M, Amano H, Takeda Y 2014 J. Cryst. Growth 407 68
[39] Ju G, Honda Y, Tabuchi M, Takeda Y, Amano H 2014 J. Appl. Phys. 115 094906
[40] Perret E, Highland M, Stephenson G, Streiffer S, Zapol P, Fuoss P, Munkholm A, Thompson C 2014 Appl. Phys. Lett. 105 051602
[41] Załuska-Kotur M A, Krzyżewski F, Krukowski S 2010 J. Non-Cryst. Solids 356 1935
[42] Załuska-Kotur M A, Krzyżewski F, Krukowski S 2011 J. Appl. Phys. 109 023515
[43] Akiyama T, Ohka T, Nakamura K, Ito T 2020 J. Cryst. Growth 532 125410
[44] Ohka T, Akiyama T, Pradipto A M, Nakamura K, Ito T 2020 Cryst. Growth Des. 20 4358
[45] Xie M, Seutter S, Zhu W, Zheng L, Wu H, Tong S 1999 Phys. Rev. Lett. 82 2749
[46] Ju G, Xu D, Thompson C, Highland M J, Eastman J A, Walkosz W, Zapol P, Stephenson G B 2022 Phys. Rev. B 105 054312
[47] Turski H, Siekacz M, Wasilewski Z, Sawicka M, Porowski S, Skierbiszewski C 2013 J. Cryst. Growth 367 115
[48] Chugh M, Ranganathan M 2017 Appl. Surf. Sci. 422 1120
[49] Xu D, Zapol P, Stephenson G B, Thompson C 2017 J. Chem. Phys. 146 144702
[50] Akiyama T, Ohka T, Nakamura K, Ito T 2020 Jpn. J. Appl. Phys. 59 SGGK03
[51] Ju G, Xu D, Thompson C, Highland M J, Eastman J A, Walkosz W, Zapol P, Shen B, Stephenson G B 2024 Phys. Rev. B 110 195303
[52] Pereira S, Correia M, Pereira E, O’ Donnell K, Alves E, Sequeira A, Franco N, Watson I, Deatcher C 2002 Appl. Phys. Lett. 80 3913
Metrics
- Abstract views: 10
- PDF Downloads: 0
- Cited By: 0









下载: