Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Progress in the Growth Kinetics of Nitride MOCVD Epitaxy Revealed by In Situ X-ray Characterization

JU Guangxu LIN Qihui XU Erqi WANG Xinqiang GE Weikun DONG Yuhui XU Ke SHEN Bo

Citation:

Progress in the Growth Kinetics of Nitride MOCVD Epitaxy Revealed by In Situ X-ray Characterization

JU Guangxu, LIN Qihui, XU Erqi, WANG Xinqiang, GE Weikun, DONG Yuhui, XU Ke, SHEN Bo
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Metal-organic chemical vapor deposition (MOCVD) remains the dominant technique for the growth of III-nitride semiconductors; however, the complex growth kinetics and defect formation mechanisms continue to limit the achievable material quality and device performance. In recent years, the rapid advancement of in situ X-ray characterization techniques—particularly those enabled by high-brightness synchrotron radiation—has provided unprecedented opportunities for probing real-time structural evolution during nitride epitaxy. This review summarizes the latest international progress in in situ X-ray studies of III-nitride MOCVD growth, with emphasis on the development of in situ MOCVD growth platforms, emerging X-ray methodologies, and their applications in monitoring surface and interfacial dynamics.
    We present the principles and implementation of in situ X-ray reflectivity (XRR), crystal truncation rods (CTR), grazing-incidence diffraction, and microbeam/coherent scattering techniques(XPCS) in nitride epitaxy. Using representative case studies from GaN and InGaN, we discuss how these tools reveal key dynamical processes—including early-stage nucleation, strain relaxation, step-flow behavior, alloy segregation, and interface roughening—under realistic growth conditions. Special attention is given to transient non-equilibrium phenomena such as compositional fluctuations and interface reconstruction in high-In content alloys, which remain inaccessible to conventional in situ probes.
    Furthermore, we highlight emerging trends enabled by next-generation synchrotron sources, including millisecond- to microsecond-resolved measurements, nanoscale spatial mapping, and in situ coherent X-ray diffraction imaging (CXDI/XPCS). These capabilities are expected to provide direct atomic-to-mesoscale insights into island nucleation, step dynamics, defect evolution, and strain-composition coupling in complex heterostructures. Finally, we outline future research directions, such as integrating data-driven structure inversion, multi-scale modeling, and closed-loop “growth-measurement-feedback” control to accelerate the understanding and optimization of nitride epitaxy.
    This review demonstrates that in situ X-ray techniques have become a powerful and indispensable bridge between microscopic structural evolution and macroscopic device performance, and will play a key role in enabling precise, controllable epitaxy of next-generation wide-bandgap semiconductor materials.
  • [1]

    Ju G, Xu D, Highland M J, Thompson C, Zhou H, Eastman J A, Fuoss P H, Zapol P, Kim H, Stephenson G B 2019 Nat. Phys. 15 589

    [2]

    Pierce M, Chang K, Hennessy D, Komanicky V, Sprung M, Sandy A, You H 2009 Phys. Rev. Lett. 103 165501

    [3]

    Hruszkewycz S, Holt M, Murray C E, Bruley J, Holt J, Tripathi A, Shpyrko O, McNulty I, Highland M, Fuoss P 2012 Nano Lett. 12 5148

    [4]

    Fenter P, Park C, Zhang Z, Wang S 2006 Nat. Phys. 2 700

    [5]

    Liu Y, Chen Z, Hu S, Peng H, Cheng Q, Raghothamachar B, Dudley M 2022 J. Cryst. Growth 583 126559

    [6]

    Fuoss P, Brennan S 1990 Annu. Rev. Mater. Sci. 20 365

    [7]

    Ju G, Xu D, Thompson C, Highland M J, Eastman J A, Walkosz W, Zapol P, Stephenson G B 2021 Nat. Commun. 12 1721

    [8]

    Stephenson G B, Eastman J A, Auciello O, Munkholm A, Thompson C, Fuoss P H, Fini P, DenBaars S P, Speck J S 1999 MRS Bull. 24 21

    [9]

    Liu R, Ulbrandt J G, Hsing H C, Gura A, Bein B, Sun A, Pan C, Bertino G, Lai A, Cheng K, et al. 2020 Nat. Commun. 11 2630

    [10]

    Cao C, Shyam B, Wang J, Toney M F, Steinruck H G 2019 Acc. Chem. Res. 52 2673

    [11]

    Jain R, Techert S 2016 Protein Pept. Lett. 23 242

    [12]

    Jiang F, Wang R V, Munkholm A, Streiffer S, Stephenson G, Fuoss P, Latifi K, Thompson C 2006 Appl. Phys. Lett. 89 161915

    [13]

    Iida D, Kondo Y, Sowa M, Sugiyama T, Iwaya M, Takeuchi T, Kamiyama S, Akasaki I 2013 Phys. Status Solidi (RRL) 7 211

    [14]

    Takeda Y, Ninoi K, Ju G, Kamiya H, Mizuno T, Fuchi S, Tabuchi M 2011 IOP Conf. Ser.: Mater. Sci. Eng. 24 012002

    [15]

    Headrick R, Kycia S, Woll A, Brock J, Murty M R 1998 Phys. Rev. B 58 4818

    [16]

    Woll A, Headrick R, Kycia S, Brock J 1999 Phys. Rev. Lett. 83 4349

    [17]

    Sasaki T, Ishikawa F, Yamaguchi T, Takahasi M 2016 Jpn. J. Appl. Phys. 55 05FB05

    [18]

    Kang H, Seo S, Noh D 2001 J. Mater. Res. 16 1814

    [19]

    Ju G, Fuchi S, Tabuchi M, Takeda Y 2013 J. Cryst. Growth 370 36

    [20]

    Ju G, Fuchi S, Tabuchi M, Takeda Y 2013 Jpn. J. Appl. Phys. 52 08JB12

    [21]

    Ju G, Fuchi S, Tabuchi M, Takeda Y 2013 J. Appl. Phys. 114 124906

    [22]

    Richard M I, Highland M, Fister T, Munkholm A, Mei J, Streiffer S, Thompson C, Fuoss P, Stephenson G 2010 Appl. Phys. Lett. 96 051911

    [23]

    Ulbrandt J G, Rainville M G, Wagenbach C, Narayanan S, Sandy A R, Zhou H, Ludwig Jr K F, Headrick R L 2016 Nat. Phys. 12 794

    [24]

    Ju G, Tabuchi M, Takeda Y, Amano H 2017 Appl. Phys. Lett. 110 262105

    [25]

    Ju G, Highland M J, Yanguas-Gil A, Thompson C, Eastman J A, Zhou H, Brennan S M, Stephenson G B, Fuoss P H 2017 Rev. Sci. Instrum. 88 035113

    [26]

    Amano H 2016 Prog. Cryst. Growth Charact. Mater. 62 126

    [27]

    Ju G, Ninoi K, Kamiya H, Fuchi S, Tabuchi M, Takeda Y 2011 J. Cryst. Growth 318 1143

    [28]

    Ninoi K, Ju G X, Kamiya H, Fuchi S, Tabuchi M, Takeda Y 2011 J. Cryst. Growth 318 1139

    [29]

    Ju G, Highland M J, Yanguas-Gil A, Thompson C, Eastman J A, Zhou H, Brennan S M, Stephenson G B, Fuoss P H 2017 Rev. Sci. Instrum. 88 035113

    [30]

    Petach T A, Mehta A, Toney M F, Goldhaber-Gordon D 2017 Phys. Rev. B 95 184104

    [31]

    Eng P J, Trainor T P, Brown Jr G E, Waychunas G A, Newville M, Sutton S R, Rivers M L 2000 Science 288 1029

    [32]

    Ju G, Xu D, Thompson C, Highland M J, Eastman J A, Walkosz W, Zapol P, Stephenson G B 2021 Phys. Rev. B 103 125402

    [33]

    Wang J, Lin Q, Xu E, Shen B, Ju G 2025 Phys. Status Solidi B 2500177

    [34]

    Neave J, Joyce B, Dobson P, Norton N 1983 Appl. Phys. A 31 1

    [35]

    Lewis B, Lee T, Grunthaner F, Madhukar A, Fernandez R, Maserjian J 1984 J. Vac. Sci. Technol. B 2 419

    [36]

    Perret E, Xu D, Highland M, Stephenson G, Zapol P, Fuoss P, Munkholm A, Thompson C 2017 Appl. Phys. Lett. 111 232102

    [37]

    Stephenson G B, Robert A, Grübel G 2009 Nat. Mater. 8 702

    [38]

    Ju G, Fuchi S, Tabuchi M, Amano H, Takeda Y 2014 J. Cryst. Growth 407 68

    [39]

    Ju G, Honda Y, Tabuchi M, Takeda Y, Amano H 2014 J. Appl. Phys. 115 094906

    [40]

    Perret E, Highland M, Stephenson G, Streiffer S, Zapol P, Fuoss P, Munkholm A, Thompson C 2014 Appl. Phys. Lett. 105 051602

    [41]

    Załuska-Kotur M A, Krzyżewski F, Krukowski S 2010 J. Non-Cryst. Solids 356 1935

    [42]

    Załuska-Kotur M A, Krzyżewski F, Krukowski S 2011 J. Appl. Phys. 109 023515

    [43]

    Akiyama T, Ohka T, Nakamura K, Ito T 2020 J. Cryst. Growth 532 125410

    [44]

    Ohka T, Akiyama T, Pradipto A M, Nakamura K, Ito T 2020 Cryst. Growth Des. 20 4358

    [45]

    Xie M, Seutter S, Zhu W, Zheng L, Wu H, Tong S 1999 Phys. Rev. Lett. 82 2749

    [46]

    Ju G, Xu D, Thompson C, Highland M J, Eastman J A, Walkosz W, Zapol P, Stephenson G B 2022 Phys. Rev. B 105 054312

    [47]

    Turski H, Siekacz M, Wasilewski Z, Sawicka M, Porowski S, Skierbiszewski C 2013 J. Cryst. Growth 367 115

    [48]

    Chugh M, Ranganathan M 2017 Appl. Surf. Sci. 422 1120

    [49]

    Xu D, Zapol P, Stephenson G B, Thompson C 2017 J. Chem. Phys. 146 144702

    [50]

    Akiyama T, Ohka T, Nakamura K, Ito T 2020 Jpn. J. Appl. Phys. 59 SGGK03

    [51]

    Ju G, Xu D, Thompson C, Highland M J, Eastman J A, Walkosz W, Zapol P, Shen B, Stephenson G B 2024 Phys. Rev. B 110 195303

    [52]

    Pereira S, Correia M, Pereira E, O’ Donnell K, Alves E, Sequeira A, Franco N, Watson I, Deatcher C 2002 Appl. Phys. Lett. 80 3913

  • [1] Qiu Peng, Liu Heng, Zhu Xiao-Li, Tian Feng, Du Meng-Chao, Qiu Hong-Yu, Chen Guan-Liang, Hu Yu-Yu, Kong De-Lin, Yang Jin, Wei Hui-Yun, Peng Ming-Zeng, Zheng Xin-He. Atomic layer deposition and application of group III nitrides semiconductor and their alloys. Acta Physica Sinica, doi: 10.7498/aps.73.20230832
    [2] Xu Jia-Jia, Hu Chun-Guang, Chen Xue-Jiao, Zhang Lei, Fu Xing, Hu Xiao-Tang. Study on in-situ real-time measurement for thin film growth of organic semiconductors. Acta Physica Sinica, doi: 10.7498/aps.64.230701
    [3] Zhu Meng-Yao, Lu Jun, Ma Jia-Lin, Li Li-Xia, Wang Hai-Long, Pan Dong, Zhao Jian-Hua. Molecular-beam epitaxy of high-quality diluted magnetic semiconductor (Ga, Mn)Sb single-crystalline films. Acta Physica Sinica, doi: 10.7498/aps.64.077501
    [4] Zhang Li-Li, Liu Zhan-Hui, Xiu Xiang-Qian, Zhang Rong, Xie Zi-Li. Optimization of the parameters for growth high-qulity GaN film by hydride vapor phase epitaxy. Acta Physica Sinica, doi: 10.7498/aps.62.208101
    [5] Zhang Lei-Ming, Xia Hui. The effects of point-defects on the dynamic scaling of growing surfaces. Acta Physica Sinica, doi: 10.7498/aps.61.086801
    [6] Zhang Kun, Liu Fang-Yang, Lai Yan-Qing, Li Yi, Yan Chang, Zhang Zhi-An, Li Jie, Liu Ye-Xiang. In situ growth and characterization of Cu2ZnSnS4 thin films by reactive magnetron co-sputtering for solar cells. Acta Physica Sinica, doi: 10.7498/aps.60.028802
    [7] Chen Ming-Wen, Ni Feng, Wang Yan-Lin, Wang Zi-Dong, Xie Jian-Xin. Effect of interface kinetics on the interface morphology of a spherical crystal in the undercooled melt. Acta Physica Sinica, doi: 10.7498/aps.60.068103
    [8] Zhang Zeng, Zhang Rong, Xie Zi-Li, Liu Bin, Xiu Xiang-Qian, Li Yi, Fu De-Yi, Lu Hai, Chen Peng, Han Ping, Zheng You-Dou, Tang Chen-Guang, Chen Yong-Hai, Wang Zhan-Guo. Thickness dependent dislocation, electrical and optical properties in InN films grown by MOCVD. Acta Physica Sinica, doi: 10.7498/aps.58.3416
    [9] Li Mei-Ya, Wang Jing, Liu Jun, Yu Ben-Fang, Guo Dong-Yun, Zhao Xing-Zhong. Dependence of growth and property of YBa2Cu3O7-x coated conductors on the thickness of CeO2 buffer layer. Acta Physica Sinica, doi: 10.7498/aps.57.3132
    [10] Meng Li-Jun, Zhang Kai-Wang, Zhong Jian-Xin. Molecular dynamics simulation of formation of silicon nanoparticles on surfaces of carbon nanotubes. Acta Physica Sinica, doi: 10.7498/aps.56.1009
    [11] Mao Hui-Bing, Jing Wei-Ping, Yu Jian-Guo, Wang Ji-Qing, Wang Li, Dai Ning. Kinetic Monte Carlo simulation of the epitaxial growth mechanism on the vicinal surface. Acta Physica Sinica, doi: 10.7498/aps.55.5435
    [12] Zhou Nai-Gen, Zhou Lang. Conditions for formation of misfit dislocation in epitaxial films — a molecular dynamics study. Acta Physica Sinica, doi: 10.7498/aps.54.3278
    [13] Qin Qi, Yu Nai-Sen, Guo Li-Wei, Wang Yang, Zhu Xue-Liang, Chen Hong, Zhou Jun-Ming. Residual stress in the GaN epitaxial film prepared by in situ SiNx deposition. Acta Physica Sinica, doi: 10.7498/aps.54.5450
    [14] LIAN GUI-JUN, LI MEI-YA, KANG JIN-FENG, GUO JIAN-DONG, SUN YUN-FENG, XIONG GUANG-CHENG. EPITAXIAL GROWTH OF PEROVSKITE OXIDE THIN FILMS. Acta Physica Sinica, doi: 10.7498/aps.48.1917
    [15] ZHU XIAO-BIN, WANG WEI. KINETICS AND SCALING BEHAVIOR OF REACTION PERCOLATION BALLISTIC SURFACE GROWTH. Acta Physica Sinica, doi: 10.7498/aps.46.1990
    [16] Wang Jie, Yu Gen-Cai, Zhu Chang-Sheng, Wang Xun. . Acta Physica Sinica, doi: 10.7498/aps.44.1471
    [17] ZHOU GUO-LIANG, SHENG CHI, FAN YONG-LIANG, JIANG WEI-DONG, YU MING-RBN. MOLECULAR BEAM EPITAXY GROWTH AND CHARACTERI-ZATION OF GexSi1-x/Si STRAINED-LAYER SUPERLATTICES. Acta Physica Sinica, doi: 10.7498/aps.42.1121-2
    [18] HAN FEI, MA BEN-KUN. GROWTH OF INTERFACE WITH A LAW AND SPATIAL CORRELATIONS IN A CONSERVATIONAL SYSTEM. Acta Physica Sinica, doi: 10.7498/aps.42.1806
    [19] HAN FEI, MA BEN-KUN. GROWTH OF INTERFACE WITH AN EXTERNAL FIELD. Acta Physica Sinica, doi: 10.7498/aps.42.1812
    [20] CHEN KE-MING, JIN GAO-LONG, SHENG CHI, YU MING-REN. THE GROWTH DYNAMICS OF Si(111) MBE STUDIED BY RHEED INTENSITY OSCILLATIONS. Acta Physica Sinica, doi: 10.7498/aps.39.1945
Metrics
  • Abstract views:  10
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  12 December 2025
  • /

    返回文章
    返回
    Baidu
    map