-
A large number of energetic particles (EPs) are generated during the heating process to obtain the high temperature plasma for fusion research. These EPs can resonantly excite various magnetohydrodynamic (MHD) instabilities, including the Alfvén eigenmodes (AEs) and the energetic particle modes (EPMs). The excitation of such MHD instabilities can lead to significant EP losses, which not only degrade the plasma confinement and heating efficiency, but also result in excessive heat loads and damage to plasma-facing components. In this paper, the influence of key plasma parameters on the excitation and damping effect of EP-driven MHD instabilities in Heliotron J device are investigated for better understanding of the excitation and transport mechanisms of EPs driven MHD in specific device, which is meaningful for achieving stable plasma operation in future fusion devices with different heating methods. In this study, the typical EPs driven MHD instabilities are observed using various diagnostic methods, such as magnetic probes, beam emission spectroscopy (BES), electron cyclotron resonance (ECE) radiometers, and interferometers. Combined with the simulation results from STELLGAP and FAR3D programs, the modulus, radial distribution, and spectral characteristics of different instabilities were deeply analyzed, revealing the evolutions of AEs and EPMs in the Heliotron J device under typical heating conditions. This paper quantitatively reveals the driving and suppressing mechanisms of EP-driven instabilities by the electron density (ne), the electron temperature (Te), and the energetic/thermal particle specific pressure (βf/βth) in Heliotron J device, under different electron cyclotron resonance heating (ECH) and neutral beam injection (NBI) conditions. The results show that different characteristics are obtained under different magnetic field geometry conditions. It is indicated that an increase in electron density can reduce the instability intensity by about 40%-60%, and an increase in the specific pressure of energetic particles can double the modal growth rate, while an increase in the specific pressure of hot particles has a 20%-50% inhibitory effect on the growth rate of the low order modes. These findings are useful for understanding the different effects of ECH and NBI on the EPs driven MHD instabilities, and they are also helpful for achieving stable operation by adjusting the heating system parameters in the stellarator like devices in the future.
-
[1] Sun Y W, Qiu Z Y, Wan B N 2024 Acta Physica Sinica 73 175202 (in Chinese)[孙有文 仇志勇 万宝年 2024 73 175202]
[2] Huang J, Li M S, Qin C, Wang X Q, 2022 Acta Physica Sinica 71 185202 (in Chinese)[黄捷 李沫杉 覃程 王先驱 2022 71 185202]
[3] Su X, Wang X Q, Fu T, Xu Y H 2023 Acta Physica Sinica 72 215205 (in Chinese)[苏祥 王先驱 符添 许宇鸿 2023 72 215205]
[4] Luo Y Q, Wang L, Yang S Z, Chen Y P, Qi X Z, Li Z L, Wang W S, Li W L, Zhao H, Tang J H, Tan F C 1990 Acta Physica Sinica 39 399 (in Chinese)[罗耀全 王龙 杨思泽 陈雁萍 戚霞枝 李赞良 王文书 李文莱 赵华 唐继辉 谭富传 1990 39 399]
[5] Shi B R 1999 Principles and Practice of Magnetic Confinement Fusion (Beijing: Atomic Energy Press) pp192-197 (in Chinese)[石秉仁 1999 磁约束聚变原理与实践(北京: 原子能出版社)pp192-197]
[6] Zhang W, Zhang X J, Liu L N, Zhu G H, Yang H, Zhang H P, Zheng Y F, He K Y, Huang J 2023 Acta Physica Sinica 72 215201 (in Chinese)[张伟 张新军 刘鲁南 朱光辉 杨桦 张华朋 郑艺峰 何开洋 黄娟 2023 72 215201]
[7] Toi K, Ogawa K, Isobe M, Osakabe M, Spong D A 2011 Plasma Physics and Controlled Fusion 53 024008
[8] Breizman B N, Sharapov S E 2011 Plasma Physics and Controlled Fusion 53 054001
[9] Yamamoto S, Nagasaki K, Kobayashi S, Nagaoka K, Cappa A, Okada H, Minami T, Kado S, Ohshima S, Konoshima S, Nakamura Y, Ishizawa A, Weir G M, Kenmochi N, Ohtani Y, Lu X, Tawada Y, Kokubu D, Mizuuchi T 2017 Nuclear Fusion 57 126065
[10] Yamamoto S, Nagasaki K, Nagaoka K ,Watanabe K Y, Spong D A, Garcia L, Cappa A 2020 Nuclear Fusion 60 066018
[11] Nagaoka K, Ido T, Ascasibar E, Estrada T, Yamamoto S, Melnikov A V, Cappa A, Hidalgo C, Pedrosa M A, van Milligen B P, Pastor I, Liniers M, Ochando M A, Shimizu A, Eliseev L G, Ohshima S, Mukai K, Takeiri Y 2013 Nuclear Fusion 53 072004
[12] Spong D A, Sanchez R, Weller A 2003 Physics of Plasmas 10 3217
[13] Jiang X H, Li S, Liu Y, Wang S, Jia F, Wang T, Han L, Zhang X 2024 Proceedings of the AAAI Conference on Artificial Intelligence 38 2561
[14] Charlton L A, Holmes J A, Hicks H R, Lynch V E, Carreras B A 1986 Journal of Computational Physics 63 107
[15] Spong D A 2013 Nuclear Fusion 53 053008
[16] Taimourzadeh S Spong DA Todo Y García L Sánchez E Carreras B A Izacard O 2019 Physics of Plasmas 26 122507
[17] Varela J, Spong D, Garcia L, Ghai Y, Ortiz J 2024 Frontiers in Physics 12 1422411
[18] Weller A Spong DA Jaenicke R Lazaros A Penningsfeld FP Sattler S 1994 Physical Review Letters 72 1220
[19] Eliseev L G, Melnikov A V, Ascasíbar E, Cappa A, Drabinskiy M, Hidalgo C, Khabanov P O, Kharchev N K, Kozachek A S, Liniers M, Lysenko S E, Ochando M de Pablos J L, Pastor I, Sharapov S E, Spong D A, Breizman B N, Varela J 2021 Physics of Plasmas 28 072510
[20] Mizuuchi T, Nakasuga M, Sano F, Nakamura Y, Kondo K, Okada H, Nagasaki K, Besshou S, Wakatani M, Obiki T, 1999 Proceedings of the 12th International Stellarator Workshop Madison, USA, September 6-10, 1999 p192
[21] Obiki T, Mizuuchi T, Nagasaki K, Okada H, Besshou S, Sano F, Hanatani K, Liu Y, Hamada T, Manabe Y, Shidara H, Ang W, Liu Y, Ikeda Y, Kawazome Y, Kobayashi T, Takamiya T, Takeda M, Ijiri Y, Senju T, Yaguchi K, Sakamoto K, Toshi K 2001 Nuclear Fusion 41 833
[22] Kobayashi S, Nagaoka K, Yamamoto S, Mizuuchi T, Nagasaki K, Okada H, Minami T, Murakami S, Lee H, Suzuki Y, Nakamura Y, Takeiri Y, Yokoyama M, Hanatani K, Hosaka K, Konoshima S, Ohshima S, Toushi K, Sano F 2010 Contributions to Plasma Physics 50 534
[23] Zhong Y, Nagasaki K, Wang Z, Kobayashi S, Inagaki S, Minami T, Kado S, Ohshima S, Kin F, Wang C, Nakamura Y, Konoshima S, Mizuuchi T, Okada H, Marushchenko N, Chen J 2024 Plasma and Fusion Research 19 1202008
[24] Nagasaki K, Yamamoto S, Kobayashi S, Sakamoto K, Nagae Y, Sugimoto Y, Nakamura Y, Weir G M, Marushchenko N, Mizuuchi T, Okada H, Minami T, Masuda K, Ohshima S, Konoshima S, Shi N, Nakamura Y, Lee H Y, Zang L, Arai S, Watada H, Fukushima H, Hashimoto K, Kenmochi N, Motojima G, Yoshimura Y, Mukai K, Volpe F, Estrada T, Sano F 2013 Nuclear Fusion 53 113041
[25] Heidbrink, W. W. 2008 particles. Physics of Plasmas, 15(5), 055501.
Metrics
- Abstract views: 35
- PDF Downloads: 0
- Cited By: 0