Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fast microwave-induced thermoacoustic microscopic imaging based on one-dimensional galvanometer scanning

NIE Yinqiang CHI Zihui CHEN Lei MENG Yang JIANG Huabei

Citation:

Fast microwave-induced thermoacoustic microscopic imaging based on one-dimensional galvanometer scanning

NIE Yinqiang, CHI Zihui, CHEN Lei, MENG Yang, JIANG Huabei
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Microwave-induced thermoacoustic imaging, as an emerging biomedical imaging technique, combines the high contrast of microwave imaging with the high spatial resolution of ultrasound imaging. Microwave-induced thermoacoustic microscopy, as an important branch of this technology, retains these advantages while possessing the ability to visualize finer tissue characteristics. However, traditional raster scanning mechanisms introduce interference into microwave field distribution due to mechanical motion, thus necessitating multiple signal average to maintain signal-to-noise ratio. Additionally, the idle time during motor movement results in extended single-scan durations, limiting its practical applications. To address these limitations, this work proposes a rapid imaging system based on one-dimensional galvanometer scanning. The system employs a hybrid galvanometer-translation stage architecture and an optimized scanning strategy to minimize microwave field interference, reduce the number of signal averages and shortens the idle time, ultimately achieving more than a tenfold improvement in imaging speed. A specially designed timing control algorithm ensures the precise synchronization of microwave excitation, galvanometer motion, and ultrasound detection, while the reconstruction algorithm suitable for the optimizing scanning method effectively corrects distortions generated in the scanning process. The system performance is assessed through phantom and ex vivo tissue experiments. Resolution tests show hundred-micrometer resolution along all three axes (332 μm × 324 μm × 79 μm), while contrast and depth imaging experiments confirm its ability to clearly distinguish targets with different conductivities, achieving an effective detection depth of at least 10 mm in tissue. Early tumor mimicking experiments further demonstrate the ability of the system to identify lesion boundaries, preliminarily revealing its potential for rapid tumor margin assessment. This approach maintains the imaging quality of microwave-induced thermoacoustic microscopy while enhancing imaging efficiency and system stability, thereby laying a crucial foundation for advancing the technology from laboratory research to clinical applications.
  • 图 1  CST仿真模型及电场分布结果 (a)传统栅型扫描机制下的仿真模型; (b)对应(a) 的组织内电场分布; (c)振镜-平移台混合扫描机制下的仿真模型; (d)对应(c)的组织内电场分布

    Figure 1.  CST simulation models and electric field (E-field) distribution results: (a) Simulation model under the conventional raster-scanning mechanism; (b) E-field distribution within the tissue corresponding to (a); (c) simulation model under the galvanometer-translational stage hybrid scanning mechanism; (d) E-field distribution within the tissue corresponding to (c).

    图 2  快速微波热声显微成像系统示意图

    Figure 2.  Schematic of fast microwave-induced thermoacoustic microscopy imaging system.

    图 3  快速微波热声显微成像系统时序图

    Figure 3.  Timing diagram for fast microwave-induced thermoacoustic microscopy system.

    图 4  铜丝分辨率测试实验 (a)直径为90 μm的铜丝实物图; (b)三维热声图像; (c) X轴分辨率测试时沿Z轴方向投影的1号和2号铜丝的二维热声显微图像; (d) (c)图中沿白色虚线的热声信剖面图; (e) Y轴分辨率测试时沿Z轴方向投影的1号和2号铜丝的二维热声显微图像; (f) (e)图中沿白色虚线的热声信剖面图; (g) Z轴分辨率测试时2号与3号铜丝沿Y轴方向投影的二维热声显微图像; (h) (g)图中沿白色虚线的热声信剖面图

    Figure 4.  Copper wire experiment: (a) Photograph of 90 μm-diameter copper wires; (b) 3D FTAM image; (c) 2D FTAM images of copper wires 1 and 2 along the z-axis for X-axis resolution testing; (d) thermoacoustic signal profile along the white dashed line in (c); (e) 2D FTAM images of copper wires 1 and 2 along the Z-axis for Y-axis resolution testing; (f) thermoacoustic signal profile along the white dashed line in (e); (g) 2D FTAM images of copper wires 2 and 3 along the Y-axis for Z-axis resolution testing; (h) thermoacoustic signal profile along the white dashed line in (g).

    图 5  盐水管对比度测试实验 (a)内径0.2 mm的盐水管实物图; (b)二维热声显微图像; (c) (b)图中选中区域像素值的统计结果以及与2%, 3%浓度盐水管的理论电导率对比图

    Figure 5.  Saline tube experiment: (a) Photograph of saline tubes with 0.2 mm inner diameter; (b) 2D FTAM image; (c) statistical results of pixel values in the selected region from (b), with theoretical electrical conductivity values for 2% and 3% saline concentration tubes.

    图 6  深度成像 (a)置于空气中的样品实物图; (b) (a)图中样品对应的三维及二维微波热声图像; (c)嵌入脂肪中的样品实物图; (d) (c)图中样品对应的三维及二维微波热声图像

    Figure 6.  Depth imaging: (a) Photograph of the sample placed in air; (b) corresponding 3D and 2D microwave-induced thermoacoustic images of the sample in (a); (c) photograph of the sample embedded in fat; (d) corresponding 3D and 2D microwave-induced thermoacoustic images of the sample in (c).

    图 7  早期肿瘤模拟成像 (a)实物图; (b)二维超声显微图像; (c)二维热声显微图像; (d)二维热声/超声显微融合图像; (e)三维超声显微图像; (f)三维热声显微图像; (g)三维热声/超声显微融合图像

    Figure 7.  Early-stage tumor simulation imaging: (a) Photograph of the phantom; (b) 2D ultrasound image; (c) 2D TAM image; (d) 2D thermoacoustic-ultrasound image; (e) 3D ultrasound image; (f) 3D TAM image; (g) 3D thermoacoustic-ultrasound image.

    Baidu
  • [1]

    Bell A G 1880 Am. J. Sci. s3-20 305

    [2]

    Olsen R G, Lin J C 1983 Bioelectromagnetics 4 397Google Scholar

    [3]

    Kruger R A, Kopecky K K, Aisen A M, Reinecke D R, Kruger G A, Kiser W L 1999 Radiology 211 275Google Scholar

    [4]

    Ku G, Wang L V 2000 Med. Phys. 27 1195Google Scholar

    [5]

    Kruger R A, Miller K D, Reynolds H E, Kiser W L, Reinecke D R, Kruger G A 2000 Radiology 216 279Google Scholar

    [6]

    Singhvi A, Boyle K C, Fallahpour M, Khuri-Yakub B T, Arbabian A 2019 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66 1587Google Scholar

    [7]

    Ren M Y, Cheng Z W, Wu L H, Zhang H M, Zhang S X, Chen X Y 2022 IEEE Trans. Biomed. Eng. 70 175

    [8]

    Wu L H, Cheng Z W, Ma Y Z, Li Y J, Ren M Y, Xing D, Qin H 2021 IEEE Trans. Med. Imaging 41 1080

    [9]

    Zhao S X, Wang H H, Li Y J, Nie L M, Zhang S X, Xing D, Qin H 2021 IEEE Trans. Biomed. Eng. 69 725

    [10]

    Liang X, Guo H, Liu Q, Wu C F, Gong Y B, Xi L 2020 Appl. Phys. Lett. 116 013701Google Scholar

    [11]

    Chen Y, Chi Z H, Du S, Fang Q C, Jiang H B 2024 Appl. Phys. Lett. 124 163702

    [12]

    Xu M H, Xu Y, Wang L H V 2003 IEEE Trans. Biomed. Eng. 50 1086Google Scholar

    [13]

    Wan P C, Liu S L, Tian R P, Shang X, Peng W T 2023 J. Appl. Phys. 133 103101Google Scholar

    [14]

    Liu S L, Zheng Z, Sun X X, Zhao Z Q, Zheng Y J, Jiang H B 2019 IEEE Trans. Biomed. Eng. 67 2206

    [15]

    Luo Z X, Li C Z, Liu D T, Wang B S, Zhang L J, Ma Y X 2023 IEEE Trans. Microw. Theory Tech. 71 2652Google Scholar

    [16]

    Evans A L, Ma C, Hagness S C 2022 Biomed. Phys. Eng. Express 8 035020Google Scholar

    [17]

    Mast T D, Johnstone D A, Dumoulin C L, Lamba M A, Patch S K 2023 Phys. Med. Biol. 68 025003Google Scholar

    [18]

    Kruger R A, Kiser W L, Reinecke D R, Kruger G A, Miller K D 2003 Mol. Imaging 2 113Google Scholar

    [19]

    Chi Z H, Huang L, Wu D, Long X J, Xu X L, Jiang H B 2022 Med. Phys. 49 84Google Scholar

    [20]

    Huang L, Zheng Z, Chi Z H, Jiang H B 2021 Med. Phys. 48 4242Google Scholar

    [21]

    Xiang H J, Zheng Z, Huang L, Qiu T T, Luo Y, Jiang H B 2021 Med. Phys. 48 1608Google Scholar

    [22]

    Kellnberger S, Hajiaboli A, Razansky D, Ntziachristos V 2011 Phys. Med. Biol. 56 3433Google Scholar

    [23]

    Tamimi E A, Xin H, Witte R S 2020 Appl. Opt. 59 G255Google Scholar

    [24]

    Liu S L, Shang X, Lu Y X, Huang L 2022 Appl. Phys. Lett. 121 243701Google Scholar

    [25]

    Xi Z J, Wang X Y, Ye K, Wang X 2023 IEEE J. Electromagn. RF Microw. Med. Biol. 7 383Google Scholar

    [26]

    Wang X Y, Xi Z J, Ye K, Gong Z, Chen Y F, Wang X 2024 Sensors 24 2682

    [27]

    Lou C G, Yang S H, Ji Z, Chen Q, Xing D 2012 Phys. Rev. Lett. 109 218101Google Scholar

    [28]

    Fang Q C, Chi Z H, Liu Y, Wang Y, Du S, Wu D, Jiang H B 2023 Med. Phys. 50 6036Google Scholar

    [29]

    Chen S L, Xie Z X, Ling T, Guo L J, Wei X B, Wang X D 2012 Opt. Lett. 37 4263Google Scholar

    [30]

    Yao J J, Huang C H, Wang L D, Yang J M, Gao L, Maslov K I, Zou J, Wang L H V 2012 J. Biomed. Opt. 17 080505.

    [31]

    2022 71 054301

    Xu S Z, Xie S M, Wu D, Chi Z H, Huang L 2022 Acta Phys. Sin. 71 054301

    [32]

    Zhu K G, Popovic M 2009 IEEE Antennas Wirel. Propag. Lett. 8 1259Google Scholar

    [33]

    王雨, 张慧敏, 覃欢 2023 72 204301Google Scholar

    Wang Y, Zhang H M, Qin H 2023 Acta Phys. Sin. 72 204301Google Scholar

    [34]

    Wang L H V, Zhao X M, Sun H T, Ku G 1999 Rev. Sci. Instrum. 70 3744Google Scholar

    [35]

    Zhu G K, Popovic M 2011 Prog. Electromagn. Res. B 35 1Google Scholar

    [36]

    Calasso I G, Craig W, Diebold G J 2001 Phys. Rev. Lett. 86 3550Google Scholar

    [37]

    Gusev V E, Karabutov A A 1993 Laser Optoacoustics (New York: AIP Press) pp1-12

    [38]

    Imasonic https://www.imasonic-ndt.com/online-design/ [2025-07-20].

    [39]

    Sonic Concepts https://www.sonicconcepts.com/transducer-selection-guide-single-element/ [2025-07-25].

    [40]

    Sun J, Wang W L, Yue Q Y 2016 Materials 9 231Google Scholar

    [41]

    Benny R, Anjit T A, Mythili P 2020 Prog. Electromagn. Res. B 87 61Google Scholar

    [42]

    Fishman E K, Ney D R, Heath D G, Corl F M, Horton K M, Johnson P T 2006 Radiographics 26 905Google Scholar

    [43]

    Liang Z, Wang W P, Qiao S Q, Huang L 2022 J. Innov. Opt. Health Sci. 15 2250015Google Scholar

    [44]

    Niskanen A O, Hassel J, Tikander M, Maijala P, Grönberg L, Helistö P 2009 Appl. Phys. Lett. 95 163701Google Scholar

    [45]

    杨晓庆, 黄卡玛 2006 电子学报 34 356

    Yang X Q, Huang K M 2006 Acta Electron. Sin. 34 356

    [46]

    Zhang W T, Chen X, Wang Y, Wu L Y, Hu Y D 2010 Res. Explor. Lab. 29 159

    [47]

    Du S, Qiang T, Chi Z H, Jiang H B 2024 J. Innov. Opt. Health Sci. 17 2450014Google Scholar

    [48]

    杜劲松, 高扬, 毕欣, 齐伟智, 黄林, 荣健 2015 64 034301Google Scholar

    Du J S, Gao Y, Bi X, Qi W Z, Huang L, Rong J 2015 Acta Phys. Sin. 64 034301Google Scholar

    [49]

    Xie S M, Huang L, Wang X, Chi Z H, Tang Y H, Zheng Z, Jiang H B 2021 J. Mech. Eng. 70 100701

    [50]

    Cheng Z W, Wu L H, Qiu T S, Duan Y H, Qin H, Hu J 2021 IEEE Trans. Med. Imaging 40 3498Google Scholar

    [51]

    张玉敏, 王富, 林俐, 叶坚 2024 分析测试学报 43 19

    Zhang Y M, Wang F, Lin L, Ye J 2024 J. Instrum. Anal. 43 19

    [52]

    Tang X Y, Fu J, Qin H 2023 J. Innov. Opt. Health Sci. 16 2230014Google Scholar

    [53]

    Sun M L, Li C Y, Chen R M, Shi J H 2024 Laser Optoelectron. Prog. 61 0618017Google Scholar

    [54]

    Jeon S, Kim J, Lee D, Baik J W, Kim C 2019 Photoacoustics 15 100141Google Scholar

    [55]

    Chen Z J, Yang S H, Xing D 2018 Chin. J. Lasers 45 0307008Google Scholar

    [56]

    Kim J Y, Lee C, Park K, Lim G, Kim C 2015 Sci. Rep. 5 7932Google Scholar

    [57]

    Qi W Z, Jin T, Rong J, Jiang H B, Xi L 2017 J. Biophotonics 10 1580Google Scholar

  • [1] LIAO Jianfeng, FENG Yunfei, WU Kefei, TAO Jianfei, ZHU Wentao, HUANG Jianye, DING Bocheng, LIU Xiaojing. Composite velocity imaging spectrometer on Shanghai soft X-ray free electron laser facility. Acta Physica Sinica, doi: 10.7498/aps.74.20251176
    [2] Wang Xia-Chun, Zhang Zhi-Rong, Cai Yong-Jun, Sun Peng-Shuai, Pang Tao, Xia Hua, Wu Bian, Guo Qiang. Methane gas spectral imaging method based on dual wedge scanning mirrors. Acta Physica Sinica, doi: 10.7498/aps.73.20231906
    [3] Wang Yu, Zhang Hui-Min, Qin Huan. Biomedical microwave-induced thermoacoustic imaging. Acta Physica Sinica, doi: 10.7498/aps.72.20230732
    [4] Xu Shou-Zhen, Xie Shi-Meng, Wu Dan, Chi Zi-Hui, Huang Lin. Ultrasound/photoacoustic dual-modality imaging based on acoustic scanning galvanometer. Acta Physica Sinica, doi: 10.7498/aps.71.20211394
    [5] Xie Shi-Meng, Huang Lin, Wang Xue, Chi Zi-Hui, Tang Yong-Hui, Zheng Zhu, Jiang Hua-Bei. Reflection mode photoacoustic/thermoacoustic dual modality imaging based on hollow concave array. Acta Physica Sinica, doi: 10.7498/aps.70.20202012
    [6] Tang Yong-Hui, Zheng Zhu, Xie Shi-Meng, Huang Lin, Jiang Hua-Bei. Thermoacoustic imaging based on noise suppression of multi-channel amplifier and additive circuit. Acta Physica Sinica, doi: 10.7498/aps.69.20201036
    [7] Wang Mei-Chang, Yu Bin, Zhang Wei, Lin Dan-Ying, Qu Jun-Le. Digital line scanning fluorescence microscopy based on digital micromirror device. Acta Physica Sinica, doi: 10.7498/aps.69.20200908
    [8] Zhou Tian-Yi. Optimal microwave imaging with random field illuminations. Acta Physica Sinica, doi: 10.7498/aps.68.20182122
    [9] Yan Yi-Hui, Liu Yu-Zhu, Ding Peng-Fei, Yin Wen-Yi. Multiphoton ionization dissociation dynamics of iodoethane studied with velocity map imaging technique. Acta Physica Sinica, doi: 10.7498/aps.67.20181468
    [10] Zhao Guang-Yuan, Zheng Cheng, Fang Yue, Kuang Cui-Fang, Liu Xu. Progress of point-wise scanning superresolution methods. Acta Physica Sinica, doi: 10.7498/aps.66.148702
    [11] Du Jin-Song, Gao Yang, Bi Xin, Qi Wei-Zhi, Huang Lin, Rong Jian. S-band microwave-Induced thermo-acoustic tomography system. Acta Physica Sinica, doi: 10.7498/aps.64.034301
    [12] Bi Xin, Huang Lin, Du Jing-Song, Qi Wei-Zhi, Gao Yang, Rong Jian, Jiang Hua-Bei. Pulsed microwave energy spatial distribution imaging by means of thermoacoustic tomography. Acta Physica Sinica, doi: 10.7498/aps.64.014301
    [13] Liu Guang-Dong, Zhang Ye-Rong. Three-dimensional microwave-induced thermo-acousticimaging for breast cancer detection. Acta Physica Sinica, doi: 10.7498/aps.60.074303
    [14] Wu Dan, Tao Chao, Liu Xiao-Jun. Study of the resolution of limited-view photoacoustic tomography. Acta Physica Sinica, doi: 10.7498/aps.59.5845
    [15] Xu Xiao-Hui, Li Hui. Scanning photoacoustic mammography with a focused transducer featuring extended focal zone. Acta Physica Sinica, doi: 10.7498/aps.57.4623
    [16] Chen Zhan-Xu, Tang Zhi-Lie, Wan Wei, He Yong-Heng. Photoacoustic tomography imaging based on an acoustic lens imaging system. Acta Physica Sinica, doi: 10.7498/aps.55.4365
    [17] Liu Xue-Rong, Hu Bo, Liu Wen-Han, Gao Chen. The theoretical calibration coefficient in the measurement of nonlinear dielectric constant with a scanning tip microwave near-field microscopy. Acta Physica Sinica, doi: 10.7498/aps.52.34
    [18] Wang Qian, Xu Jin-Qiang, Wu Jin, Li Yong-Gui. The imaging of chemical samples with a scanning near-field infrared microscope. Acta Physica Sinica, doi: 10.7498/aps.52.298
    [19] CAI QUN, WU LEI, ZHU ANG-RU, WANG XUN. STM IMAGES OF NaCI MICROCRYSTAL IN THE AIR. Acta Physica Sinica, doi: 10.7498/aps.42.1266
    [20] ZHANG SHU-YI, YU CHAO, MIAO YONG-ZHI, TANG ZHENG-YAN, GAO DUN-TANG. SCANNING PHOTOACOUSTIC MICROSCOPY. Acta Physica Sinica, doi: 10.7498/aps.31.704
Metrics
  • Abstract views:  290
  • PDF Downloads:  11
  • Cited By: 0
Publishing process
  • Received Date:  29 July 2025
  • Accepted Date:  04 November 2025
  • Available Online:  19 November 2025
  • /

    返回文章
    返回
    Baidu
    map